

Better Punctuation Prediction with Hierarchical Phrase-Based Translation

Stephan Peitz, Markus Freitag and Hermann Ney

peitz@cs.rwth-aachen.de

IWSLT 2014, Lake Tahoe, CA December 4th, 2014

Human Language Technology and Pattern Recognition
Lehrstuhl für Informatik 6
Computer Science Department
RWTH Aachen University, Germany

Outline

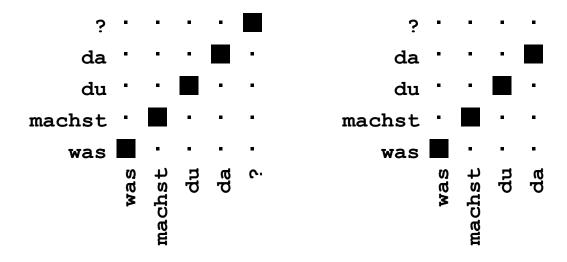
- **►** Introduction
- ► Modeling Punctuation Prediction as Machine Translation
- ► Hierarchical Phrase-based Translation
- **▶** Experimental Evaluation
- **▶** Conclusion

Introduction

- Spoken language translation (SLT)
 - Automatic speech recognition (ASR)
 - Machine translation (MT)
- ▶ In speech punctuation is not made explicitly
 - > ASR systems provide an output without punctuation marks
 - > MT systems are trained on data with proper punctuation
- ► Reintroduce punctuation marks with monolingual translation
 - > Translate from unpunctuated text to text with punctuation
 - Based on phrase-based translation
- ► In this work
 - ▶ Use hierarchical instead of phrase-based translation
 - ▶ Investigation of the optimization criterion

Introduction

- ► Monolingual translation system
 - More features besides the language model
 - Scaling factors can be tuned
- Phrase-based translation
 - > Sequence of words are translated at once
 - Local contextual information is preserved
 - Useful to predict punctuation depending of its surrounding words (e.g. commas)
 - ▶ Limitation: dependencies beyond the local context
- Hierarchical phrase-based translation
 - Discontinuous phrases with "gaps"
 - > Capture long-range dependencies between words and punctuation marks



Modeling Punctuation Prediction as Machine Translation

▶ Translation Model

- > Extract from a pseudo-bilingual corpus
- ▶ Take monolingual corpus as source and target text
- > Create monotone alignment
- ▶ Remove punctuation marks from the source text
- Punctuation marks in the target sentences become unaligned

Modeling Punctuation Prediction as Machine Translation

- ▶ Optimization
 - ▶ Remove punctuation marks from a development set
 - ▶ Use the original development set as reference
 - ▶ Tune scaling factors with MERT [Och 03]
- ightharpoonup Prediction performance is measured with the F_1 -Score
 - \triangleright Use F_{α} -Score rather than BLEU as a more suitable optimization criterion

$$F_{lpha} = (1 + lpha) \cdot rac{(precision \cdot recall)}{lpha \cdot precision + recall}$$

b By varying α , more emphasis can be put on recall or precision

Modeling Punctuation Prediction as Machine Translation

- Language model
 - > Trained on monolingual corpora with proper punctuation
- Decoding
 - > Translate from unpunctuated text to text with punctuation
 - ▶ Monotone, no reordering model is necessary
- ▶ In this work
 - ▶ Perform prediction before the actual translation
 - > Final machine translation system has not to be retrained

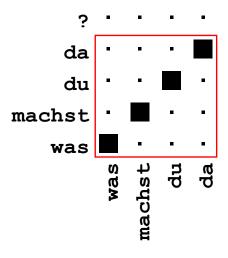
Hierarchical Phrase-based Translation

- ► Allow discontinuous phrases with "gaps"
- ▶ Obtain phrases from word-aligned bilingual training data
 - \triangleright Sub-phrases within a phrase are replaced by a generic non-terminal X
 - ▶ Maximum of two gaps per rule

$$X
ightarrow ig\langle \ddot{\mathsf{u}}\mathsf{ber}\ X_0 \ \mathsf{hinausgehen}\ X_1, \mathsf{go}\ \mathsf{beyond}\ X_0 \ X_1 ig
angle$$

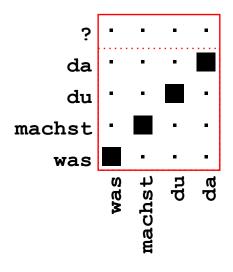
- Reordering is modelled implicitly
- Formalized as a synchronous context-free grammar (SCFG)
- ► Speaking of *rules* rather than phrases

Punctuation Prediction based on Hierarchical Translation

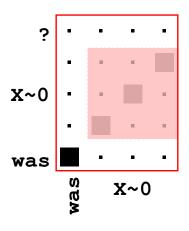

- ► Aim: model dependencies between words and punctuation marks
 - ▷ e.g. relationship between question word ("was") and question mark

$$X
ightarrow \left\langle \mathsf{was}\ X_0, \mathsf{was}\ X_0\
ight.
ight
angle$$
 $X
ightarrow \left\langle \mathsf{machst}\ \mathsf{du}\ X_0, \mathsf{machst}\ \mathsf{du}\ X_0\
ight.
ight
angle$

- **▶** Restrictions
 - ▶ Performing monotone translation
 - Reordering is not necessary
 - > Rules with one non-terminal maximum is sufficient


Additional Extraction Heuristic

 $X
ightarrow \left\langle \mathsf{was} \; \mathsf{machst} \; \mathsf{du} \; \mathsf{da}, \mathsf{was} \; \mathsf{machst} \; \mathsf{du} \; \mathsf{da}
ight
angle$


Additional Extraction Heuristic

 $X
ightarrow \left\langle \mathsf{was} \; \mathsf{machst} \; \mathsf{du} \; \mathsf{da}, \mathsf{was} \; \mathsf{machst} \; \mathsf{du} \; \mathsf{da} \; \mathbf{?}
ight
angle$

Additional Extraction Heuristic

 $X o raket{ ext{was machst du da, was machst du da?}} X o raket{ ext{machst du da, machst du da}} X o raket{ ext{was }X_0, ext{was }X_0 ?}$

Experimental Evaluation

- **▶** Evaluation of prediction performance
 - Removed punctuation from provided development and test sets (manual transcriptions, no ASR errors)
 - \triangleright Measurement: Precision, Recall and F_1 -Score
 - ho Optimization criteria: BLEU and F_{lpha} -Score with $lpha=\{1,2,3,4\}$
 - ▶ Phrase-based (PBT) vs. hierarchical translation (HPBT)
 - ▶ Comparison against HIDDEN-NGRAM [Stolcke 02]
- Evaluated on the IWSLT 2014 translation tasks
 - ▶ German→English and English→French
- Translation models were trained on indomain data
- ► Language model was trained on all available data

Prediction Results

► From unpunctuated German text to German with punctuation marks

system	tuned on	Prec.	Rec.	$oldsymbol{F}_1$
PBT	BLEU	82.7	67.5	74.3
	$oldsymbol{F_1}$	82.6	67.5	74.3
	$oldsymbol{F_2}$	78.3	71.4	74.7
	$oldsymbol{F_3}$	76.6	72.2	74.4
	$m{F}_4$	72.5	73.6	73.0
HPBT	BLEU	86.4	65.5	74.7
	$oldsymbol{F_1}$	81.8	71.0	76.0
	$oldsymbol{F_2}$	77.0	75.4	76.2
	$oldsymbol{F_3}$	75.9	75.2	75.6
	$oldsymbol{F_4}$	71.8	73.7	74.2
HIDDEN-NGRAM	_	82.7	69.5	75.5

- ightharpoonup HIDDEN-NGRAM outperforms PBT in terms of F_1
- ightharpoonup HPBT tuned on F_2 works best

Analysis

► Were hierarchical rules used in the decoding process?

system	tuned on	lexical rules	hierarchical rules
PBT	BLEU	2313	-
PBT	$oldsymbol{F_2}$	2549	-
HPBT	$oldsymbol{F_2}$	2234	442

► All applied hierarchical rules introduced punctuation marks

Analysis

Input "was machst du nur"

- ▶ PBT "was machst du nur ."
- Applied phrases

 - $\triangleright \langle \text{nur}, \text{nur} . \rangle$
- ► HPBT "was machst du nur ?"
- ► Applied rules
 - $hd X
 ightarrow \langle \mathsf{was}, \mathsf{was}
 angle$
 - $hd X
 ightarrow \langle \mathsf{machst} \ \mathsf{du} \ X^{\sim 0}, \mathsf{machst} \ \mathsf{du} \ X^{\sim 0} \ \ref{eq:supersystem}
 angle$
 - $\triangleright X \rightarrow \langle \mathsf{nur}, \mathsf{nur} \rangle$

Impact on Translation Quality

- **▶** Translation tasks:
 - ▷ English→French
 - ▶ German→English
- ► Tested on enriched manual and automatic transcription
- ► Applied baseline phrase-based MT systems trained on all available data
- ▶ Measurement: BLEU

Impact on Translation Quality

- **▶** German→English
- ► WER of automatic transcription: 21.6%

					transcription		
					manual	automatic	
system	tuned on	Prec.	Rec.	$oldsymbol{F}_1$	BLEU	BLEU	
PBT	BLEU	82.7	67.5	74.3	27.3	18.7	
PBT	$oldsymbol{F_2}$	78.3	71.4	74.7	27.5	18.6	
HPBT	$oldsymbol{F_2}$	77.0	75.4	76.2	27.7	19.1	
HIDDEN-NGRAM	-	82.7	69.5	75.5	27.2	19.0	
correct punctuation				29.4	-		

- ► Prediction using HPBT seems to help
- ► Only small improvement on automatic transcription

Impact on Translation Quality

- **►** English→French
- ► WER of automatic transcription: 16.7%

					transcription		
					manual	automatic	
system	tuned on	Prec.	Rec.	$oldsymbol{F}_1$	BLEU	BLEU	
PBT	BLEU	81.2	67.6	73.7	28.4	22.6	
PBT	$oldsymbol{F_2}$	72.2	75.0	73.6	28.6	22.8	
HPBT	$oldsymbol{F_2}$	74.8	77.1	75.9	28.9	22.7	
HIDDEN-NGRAM	-	82.0	60.2	69.4	27.0	21.7	
correct punctuation				31.9	-		

- ► Prediction using monolingual MT systems works best
- ► Mixed results on automatic transcription

Conclusion

- ► Punctuation prediction based hierarchical translation
 - ▶ Capture long-range dependencies between words punctuation marks
 - \triangleright Improvements in terms of Precision, Recall and F_1 -Score
 - Small impact on translation quality
- ▶ Use F_{α} -Score as optimization criterion
- ► Future work
 - ▶ Investigate features operating on sentence level
 - > Enrich grammar with syntactical information

Thank you for your attention

Stephan Peitz

peitz@cs.rwth-aachen.de

http://www-i6.informatik.rwth-aachen.de/~peitz

References

- [Chiang 05] D. Chiang: A Hierarchical Phrase-Based Model for Statistical Machine Translation. pp. 263–270, Ann Arbor, Michigan, June 2005. 8
- [Ma & Tinsley⁺ 08] Y. Ma, J. Tinsley, H. Hassan, J. Du, A. Way: Exploiting Alignment Techniques in MaTrEx: the DCU Machine Translation System for IWSLT08. In *Proc. of the International Workshop on Spoken Language Translation*, pp. 26–33, Hawaii, USA, 2008. 7
- [Och 03] F.J. Och: Minimum Error Rate Training in Statistical Machine Translation. pp. 160–167, Sapporo, Japan, July 2003. 6
- [Peitz & Freitag⁺ 11] S. Peitz, M. Freitag, A. Mauser, H. Ney: Modeling Punctuation Prediction as Machine Translation. In *Proceedings of the International Workshop on Spoken Language Translation (IWSLT)*, San Francisco, CA, Dec. 2011. 7
- [Stolcke 02] A. Stolcke: SRILM-An extensible language modeling toolkit. In *In Proceedings of the 7th International Conference on Spoken Language Processing (ICSLP 2002)*, pp. 901–904, 2002. 13