An Exploration of Segmentation Strategies in Stream Decoding

Andrew Finch Xiaolin Wang Eiichiro Sumita

Multilingual Translation Group
National Institute of Information and Communications Technology
Kyoto, Japan
Overview

• Motivation
• Explanation of stream decoding
• Alternative strategies
 - Degree of commitment
 - Minimizing forced monotonicity
 - Introducing segmentation cues into the stream
• Conclusion and future directions
Motivation

• In interpretation, the interpreter cannot fall too far behind the speaker
• The interpreter must therefore periodically commit to producing a partial translation
• Getting this segmentation right is pivotal in the success of a machine interpretation system
 - It is undesirable, perhaps impossible to take back a partial translation
 - Continuing from a bad position may inevitably lead to a bad translation
Segmentation Approaches

• Many previous approaches pre-segment the input
 - Fixed length segments
 - Punctuation (Sridhar et al. 2013)
 - Optimizing BLEU (Oda et al. 2014)
 - many others

• Stream decoding (Kolss et al. 2008) segments during the decoding
 - There are segmentation cues in the decoding process
A possible segmentation point exists if
- The source phrase before it is part of a contiguous sequence of translated source phrases that extend back to the end of the previous output

Investigated as a pre-segmentation strategy in Sridhar et al. 2013, but was ineffective
Stream Decoding Overview

- Phrase-based SMT processes sentence by sentence
- A stream decoder operates on a theoretically infinite stream of tokens (or tuples from a confusion network)
 - A search graph is maintained.
 - As new tokens arrive on the stream, the search graph is extended
 - When the decoder falls too far behind, it is forced to make an output
 - The search graph is truncated, by removing paths irrelevant to the output
Stream Decoding Parameters

- **L_{max}** the number of words the decoder is permitted to fall behind.
 - When the number of untranslated words hits this threshold, the decoder is forced to output something.

- **L_{min}** the number of words the decoder should leave untranslated.
 - When the decoder commits to a partial translation, it will not translate the last L_{min} words from the stream.
 - Prevents the decoder from committing too early.
Stream Decoding in Action

Translated Tokens

Untranslated Tokens

Future Tokens

\(L_{\text{max}} \)

\(L_{\text{min}} \)

Current Position
Choosing where to segment: Plan A

- Unroll the best translation hypothesis backwards phrase-by-phrase

Unrolled at least \(L_{\text{min}} \) words?

Yes → Contiguous sequence of phrase pairs back to the last output?

Yes → Output partial translation

No → What if we have unrolled everything?

No → Plan B

Yes → Plan B

Output partial translation
Plan B

- Re-decode, but this time force the first step to be monotonic..
- .. then execute Plan A.
 - This time success is guaranteed.
Methodology

- Used the TED talk data from the IWSLT campaign.
- We ran experiments on all the language pairs, but obtained similar results on pairs of European languages.
 - Results on English-Spanish, English-German, and English-Chinese are reported here
- 170-180K ‘sentence’ training set, 887 development set, 1400-1700 test set.
- OCTAVIAN in-house PBSMT decoder
- Evaluated with latest multi-bleu script at the talk-level
Increasing the output frequency

• The original stream decoder outputs the longest possible translation subject to its constraints.
• Other strategies are possible, for example, it is possible to output the shortest possible translation.
 - Roll back the best hypothesis as far as possible
• Measure the performance with “average latency”: the average number of words each word output is behind the speaker.
• We observed a small improvement for most language pairs, but for some (for example English-French) there was almost no difference
Reducing the number of forced monotonic steps

- Forcing the decoder to make a monotonic first step is best avoided and may lead to an unnatural translation.
- Perhaps there are alternative hypotheses in the search graph that can be used to avoid this issue.
- One way is to search the n-best list for a suitable hypothesis.
 - This has the disadvantage that you will proceed with a lower scoring (worse) hypothesis.
Using n-best lists

- Searching the n-best list can have a large impact on the number of instances where a forced monotonic is required, especially at lower latencies.
English-Spanish: 1-best vs. 20-best

1-best

20-best

(Talk level) BLEU (%) vs. Minimum Latency

Bleu Baseline
Max Latency = 10
Max Latency = 8
Max Latency = 6
Max Latency = 4
Max Latency = 2
English-Chinese: 1-best vs. 20-best

1-best

Minimum Latency

20-best

Minimum Latency
Introducing segmentation cues on the stream

• It is possible to combine stream decoding with approaches that predict the segmentation through other means

• We propose to introduce 2 types of token onto the stream:
 - `<s>` forces the decoder to translate and output up to the token; the language model context is discarded
 - `<p>` forces the decoder to translate and output up to the token; the language model context is preserved
• The sentence boundary information from the TED corpus was used to annotate the segmentation cues
• Commas in the source TED corpus was used to annotate the segmentation cues
• Commas appear to be ineffective
Conclusions

• We evaluated the stream decoder on new language pairs and data sets
 - Our findings support the original work
 - Stream decoding can yield high quality translations with low latencies
 - The approach works for languages pairs like English-Chinese with a moderate amount of re-ordering
Conclusions

• We proposed and investigated alternative decoding strategies:
 - For some pairs it may be better to use a strategy that outputs more frequently
 - It is better to avoid making forced monotonic steps. We proposed a straightforward n-best list extension to the original approach.

• Sentence boundary information can be used effectively by the stream decoder

• Punctuation cannot provide any further benefit
Future Directions

• Study the application of the steam decoder to language pairs with more serious re-ordering issues, for example English-Japanese

• Study other methods of choosing a single state from the search graph (we tried several variants, but found our simple n-best approach to be the most effective).

• Introduce an statistical segmentation model into the decoder
Thank you for listening!
English-German

![Graph showing BLEU score vs. minimum latency for different maximum latencies. The graph includes curves for Maximum Latency = 10, 8, 6, 4, and 2.]