

Lexical Translation Model using a Deep Neural Network Architecture

Thanh-Le Ha, Jan Niehues and Alex Waibel

Institute for Anthropomatics and Robotics, Interactive Systems Labs

www.kit.edu

Phrase-based SMT – Context problems

German: Der Mörder bringt sein kleines Opfer heimlich im Parkhaus um Correct: In the parking garage, the murderer kills his victim secretly Wrong: The murderer brings the victim secretly in the parking garage around

- Translation model: Can only perform the lexical translation within phrases
 - Phrases are locally determined as they are word sequences
 - Cannot model long-distance translation without reordering
- Language model: A context up to *n* words can be considered only

Motivation

- Exploit global contexts beyond the phrasal boundaries
- Maintain local contexts against bag-of-word models
- Learn shared word representation space:
 - To better model dependencies between source words
 - To perform abstraction over discrete word representation

Related work

- Utilize global contexts:
 - Treat the lexical selection as a WSD problem (Carpuat et al., 2007)
 - Predict appearances of target words based on the source words (Bangalore et al., 2007, Mauser et al., 2009, Niehues and Waibel, 2013)
- Perform translation over shared word representation using deep NNs:
 - Model target word's probability given history of bilingual n-grams (Le et al., 2012, Devlin et al., 2014)
 - Calculate probability of target phrases given source phrases (Schwenk et al., 2012)

Discriminative Word Lexicon (DWL)

- Original idea from (Mauser et al., 2009)
 - Build a classifier for every target word, given source words' presences
 - Combine the probabilities of target words to form the sentence score.
- Extensions from (Niehues and Waibel, 2013)
 - Extend DWL to employ local contexts (source n-grams, target surrounding words)
- Both use Maximum Entropy (ME).

DWL using Deep Neural Network - Idea

- Introduce the non-linearity into the DWL
 - Make predictions over shared word representation of the source side
- Better model the dependencies among features
 - Features in DWL could be extended to n-grams, word classes, POS tags, ...

DWL using Deep Neural Network - Architecture

- NNDWL: A Feed-forward neural network with 3 hidden layers H₁, H₂ and H₃
- Input: the bag-of-word representation (BoW) of source sentence s, size Vs
- Output: Probabilistic decision for the presence of all target words, size V_t
- Activation function: sigmoid (multivariate binary classifiers)

DWL using Deep Neural Network - Training

- Calculate the output of the network with current weights (forward pass).
- Back-propagate Cross Entropy error between \hat{t} and \vec{p} to update the weights:

$$E = -\frac{1}{V_t} \sum_{i=1}^{V_t} \left(\hat{t}_i \ln p_i + (1 - \hat{t}_i) \ln(1 - p_i) \right)$$

 \hat{t} : BoW vector of the training target sentence $\vec{p} = [p_i]$: Output of the network

Practical Issues

- Difficulty: Training is considerably expensive, due to:
 - Non-linearity over hidden layers
 - Calculations of the output over the whole target vocabulary
- Solutions:
 - Use rectified linear units on hidden layers
 - Model the DWL for the k most frequent words only
 - Others are treated as unknown words
- Utilize sparse representation for the input
- Try drop-out as a regularization

Evaluation - System Description

- TED translation task: IWSLT English→French (EN-FR) 2013
 - Baseline: The best system for IWLST EN-FR 2013 without MEDWL:
 - Phrase-based MT, train on large training data
 - PT and LM Adaptations
 - Bilingual, POS-based and cluster language models
 - Lexicalized reordering
 - DWL only trained on the TED corpus

Evaluation - Different vocabulary sizes

The size of the source and target sides varies in {500, 1000, 2000, 5000}

System (En-Fr)	BLEU	∆BLEU
Baseline	31.94	_
MaxEnt DWL	32.17	+0.23
NNDWL 500	32.06	+0.12
NNDWL 1000	32.37	+0.43
NNDWL 2000	32.38	+0.44
NNDWL 5000	32.07	+0.13
Full NNDWL	32.06	+0.12

Table : Results of the English \rightarrow French NNDWL.

System (En-Fr)	BLEU	$\Delta BLEU$
Baseline	31.94	-
NNDWL 2000	32.38	+0.44
NNDWL 2000 SC-200-100	32.35	+0.41
NNDWL 2000 SC-500-200	32.44	+0.50
NNDWL 2000 SC-1000-500	32.36	+0.42

Table : Results of the 2000-NNDWL with source contexts.

System (En-Fr)	BLEU	$\Delta BLEU$
Baseline	31.94	-
NNDWL 1000	32.37	+0.43
NNDWL 1000 SC-200-100	32.01	+0.07
NNDWL 1000 SC-500-200	32.23	+0.29
NNDWL 1000 SC-1000-500	32.39	+0.45

Table : Results of the 1000-NNDWL with source contexts.

Evaluation - Different architectures

SimNNDWL: A neural network with one hidden layer.

System (En-Fr)	BLEU	∆BLEU
Baseline	31.94	_
NNDWL 1000	32.37	+0.43
SimNNDWL 1000	32.12	+0.18
NNDWL 2000	32.38	+0.44
SimNNDWL 2000	32.29	+0.35

Table : Results of NNDWL and SimNNDWL architectures.

Evaluation - Different language pairs

Conclusion & Future work

Conclusion

- DWL using deep neural networks improves over not using it or using the original one, on different language pairs.
- Deep architecture works better than the simpler ones.
- The configuration of the network need to be chosen carefully.

Future work

- Evaluate the accuracy of lexical selection methods
- Integrate other non-word features
- Conduct more experiments with other configurations

Thank you

DWL example

Karlsruhe Institute of Technology

ME-model for teacher

Target: the teacher talks .

Features: .=1; der=1; Lehrer=1; redet=1 Label: 1

DWL example

ME-model for teacher

Source: die Lehrer reden .

↓ Features: .=1; die=1; Lehrer=1; reden=1 Label: 0

Target: the teachers talk .

DWL example

ME-model for teacher

Source-context DWL

• Original DWL is a bag-of-word model:

Source-context DWL

• Original DWL is a bag-of-word model:

Sentence Probability

• With the independence assumption of target words:

$$p(t|s) \approx \prod_{j=1}^{J} p(t_j|s)$$

J: Length of the target sentence t

Then the score of every phrase pair can be calculated before translation