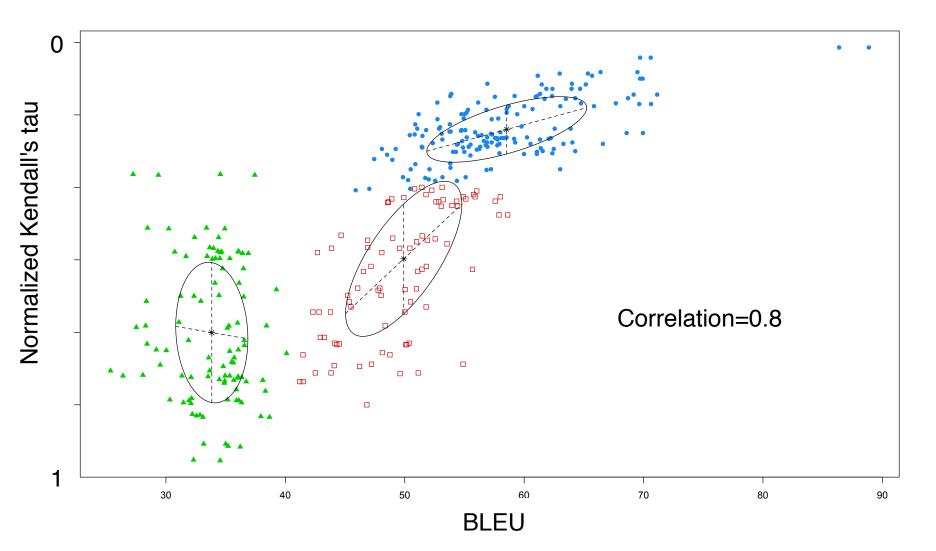
Empirical Dependency-Based Head Finalization for Statistical Chinese-, English-, and French-to-Myanmar (Burmese) Machine Translation

> Chenchen Ding[†], Ye Kyaw Thu[‡], Masao Utiyama[‡], Andrew Finch[‡], Eiichiro Sumita[‡]

[†] Department of Computer Science, University of Tsukuba 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8573, Japan

[‡] National Institute of Information and Communications Technology3-5 Hikaridai, Seikacho, Sorakugun, Kyoto, 619-0289, Japan


Normalized Kendall's Tau

- Often used to measure differences in word order between languages
- Related to the number of crossing word alignments
- Calculated from word aligned data
- In the range from 0 to 1
 - 0 indicating identical word order

Kendall's Tau for Myanmar

Language Pair	Normalized Kendall's Tau
Engish-Myanmar	0.538
French-Myanmar	0.487
Chinese-Myanmar	0.315
Korean-Myanmar	0.156
Japanese Myanmar	0.123

Importance of re-ordering

Pre-ordering

- Long distance word re-ordering is a problem for SMT
- Pre-ordering approaches have been successful in SVO-to-SOV translation
 - Re-order the source in a pre-processing step
 - Use re-ordering heuristics in combination with a high-precision parser
 - Efficient

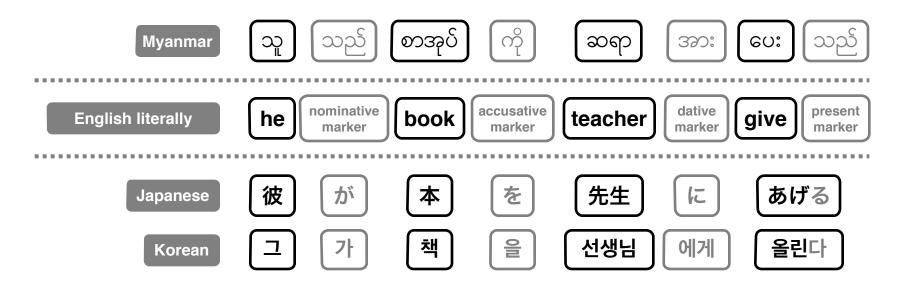
Exploiting the Head Final Property

- Languages such as Japanese, have the property that the head word typically follows its dependent words
- Parse the source with a head-driven phrase structure grammar (HPSG)
 - Pre-order with rules operating on the parse tree
- English-to-Japanese : [Isozaki+ 2012]
- Chinese-to-Japanese : [Han+ 2012]

Other approaches

- HPSG parsers not available for all languages
 - [Xu+ 2009] proposed using a dependency parser
- Statistical approaches are also possible, e.g. LADER (Neubig+ 2012)
- Myanmar (Burmese) is a typical SOV language
 - → Head-finalization should work

Myanmar Language


- SOV language
 - Consistently head-final
 - Similar to Japanese and Korean
 - Function morphemes succeed content morphemes
 - Unlike Japanese and Korean, Myanmar is analytic (morphemes are non-inflected syllables)

Pre-ordering for English-, Chinese-, French-to-Myanmar SMT

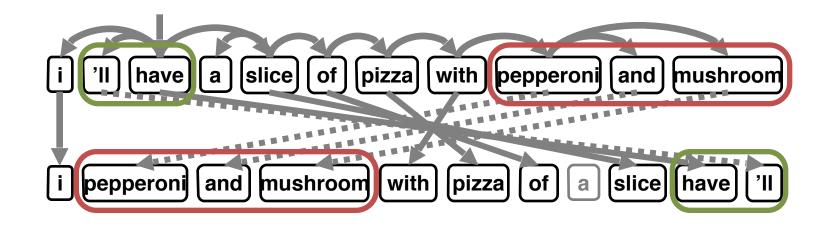
• Myanmar (Burmese) Language

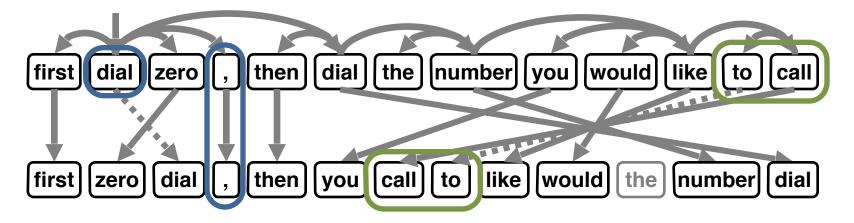
- Similar syntax to Japanese/Korean

→ Transfer techniques used for JA/KO to MY

(Content morphemes in black, function morphemes in grey)

Our Head-Finalization


- Dependency-based head-finalization
 - A combination of [Isozaki+ 2012] and [Xu+ 2009]
- Available for more source languages
- Just move the head after modifiers
 - Simple
 - With several exceptions
 - → Examples


Head finalization for Myanmar

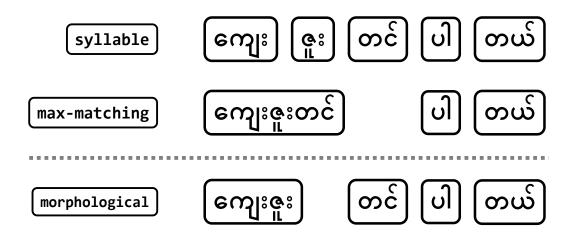
Our rules follow 3 basic principles:

- Do not break a coordination structure
 - English: conj, cc
- Do not reorder across punctuation
 - English: punct
- Auxiliary verbs are placed after their head verb
 - English: aux, auxpass, cop

Pre-reordering Examples

Myanmar Oriented Process

- In [Isozaki+, 2012] topic, nominative, and accusative markers are inserted on the source side
 - In Myanmar these are typically omitted, unless there is ambiguity
- We handle negation in Myanmar
 - Negation prefix and suffix ("ma ... buu" like "ne ... pas" in French)
 - Place negation word immediately before verb, and "neg" maker immediately after
- Source side articles are deleted


Experimental Methodology

- Chinese-, English-, French-to-Myanmar
 - On BTEC corpus
 - Train: 155,121 sentence pairs
 - Dev.: 5,000 sentence pairs
 - Test : 2,000 sentence pairs
- For dependency parsing
 - Chinese : Stanford parser
 - English : Stanford parser
 - French : Stanford tagger (CC set) + MALT parser
- Statistical approach for comparison

 LADER

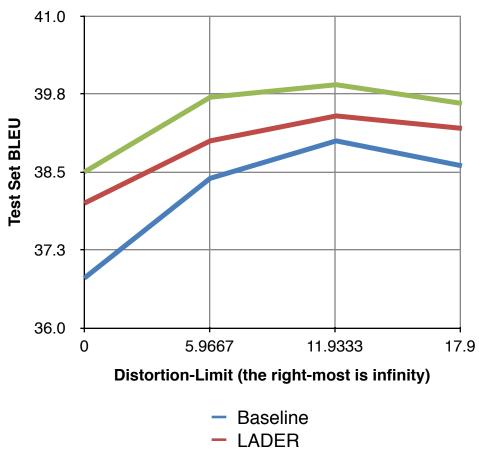
Myanmar Segmentation

- 2 approaches
 - Syllable segmentation (Fr-My)
 - Maximum matching (Ch-My, En-My)

Training LADER

- 1000 sentences sampled randomly
 - Used automatic alignment since no manually-aligned data was available
- Using larger training data set sizes with automatic alignment gave only a small improvement in the original work [Neubig+ 2012].
- Long training times.

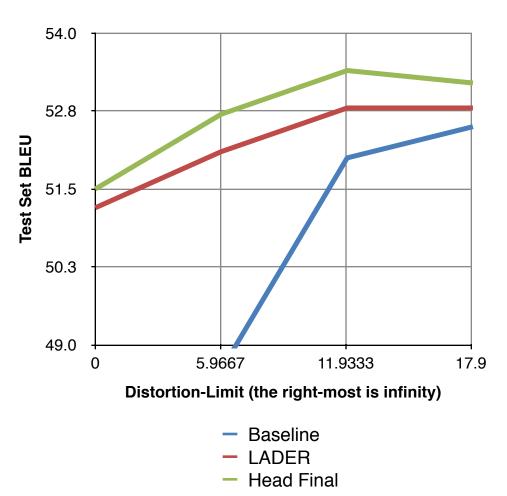
Evaluation


- Evaluated using BLEU (default MOSES)
- Also used RIBES
 - For distant language pairs, BLEU has been shown to correlate poorly with human judgements [Goto+ 2011]
 - RIBES was developed specifically to evaluate distant language pairs
- Results had similar characteristics with both metrics

Results of Chinese-to-Myanmar

- Average Kendall's τ
 - Baseline : 0.31

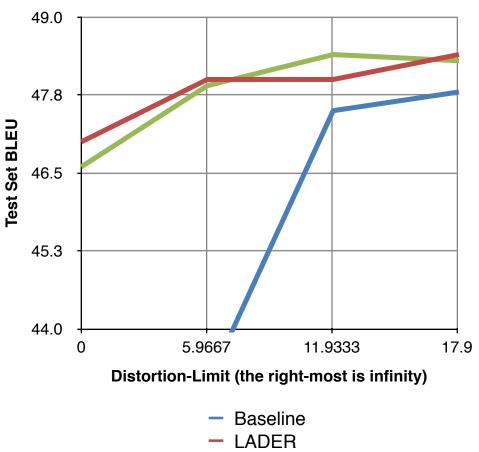
:0.17


- LADER : 0.20
- Head Final
- Maximum matching segmentation

Head Final

Results of English-to-Myanmar

- Average Kendall's τ
 - Baseline : 0.47
 - LADER : 0.21
 - Head Final : 0.21
- Maximum matching segmentation



Results of French-to-Myanmar

- Average Kendall's τ
 - Baseline : 0.46

: 0.24

- LADER : 0.24
- Head Final
- Maximum matching segmentation

Head Final

Summary

- Head-final approach works on distant languages to Myanmar SMT
 - Can use dependency structure
 - Simple set of rules

- Future work
 - Experiment on larger corpora
 - Experiment on longer sentences

Thank you very much for listening!