
International Workshop on
Spoken Language Translation

Proceedings

December 4–5, 2014

Lake Tahoe, CA

iw
sl

t2
0
1
4
.o

rg



Proceedings of the

International Workshop on
Spoken Language Translation

December 4th and 5th 2014

Lake Tahoe, CA, USA

Edited by
Marcello Federico
Sebastian Stücker

François Yvon



Contents

Content i

Foreword iv

Organizers vi

Acknowledgments viii

Participants ix

Program x

Keynotes xvi
Speech translation for everyone - breaking down the barriers . . . . . . . . xvi
Arul Menezes

Evaluation Campaign 2
Report on the 11th IWSLT Evaluation Campaign, IWSLT 2014 . . . . . . . . . . . . . . . . . . 2
Mauro Cettolo, Jan Niehues, Sebastian Stücker, Luisa Bentivogli and Marcello Federico

FBK @ IWSLT 2014 - ASR track . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Bagher Babaali, Romain Serizel, Shahab Jalalvand, Daniele Falavigna, Roberto Gretter and Diego
Giuliani

The UEDIN ASR Systems for the IWSLT 2014 Evaluation . . . . . . . . . . . . . . . . . . . . 26
Peter Bell, Pawel Swietojanski, Joris Driesen, Mark Sinclair, Fergus McInnes and Steve Renals

Improving MEANT Based Semantically Tuned SMT . . . . . . . . . . . . . . . . . . . . . . . 34
Meriem Beloucif, Chi Lo-kiu and Dekai Wu

FBK’s Machine Translation and Speech Translation Systems for the IWSLT 2014 Evaluation Cam-
paign . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

Nicola Bertoldi, Prashant Mathur, Nicholas Ruiz and Marcello Federico
Edinburgh SLT and MT System Description for the IWSLT 2014 Evaluation . . . . . . . . . . . 49
Alexandra Birch, Matthias Huck, Nadir Durrani, Nikolay Bogoychev and Philipp Koehn

Combined Spoken Language Translation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
Markus Freitag, Jörn Wübker, Stephan Peitz, Hermann Ney, Matthias Huck, Alexandra Birch,
Nadir Durrani, Philipp Koehn, Mohammed Mediani, Isabel Slawik, Jan Niehues, Eunah Cho, Alex
Waibel, Nicola Bertoldi, Mauro Cettolo and Marcello Federico

The MITLL-AFRL IWSLT 2014 MT System . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
Michaeel Kazi, Elizabeth Salesky, Brian Thompson, Jessica Ray, Michael Coury, Wade Shen, Tim
Anderson, Grant Erdmann, Jeremy Gwinnup, Katherine Young, Brian Ore and Michael Hutt

The 2014 KIT IWSLT Speech-to-Text Systems for English, German and Italian . . . . . . . . . . 73
Kevin Kilgour, Michael Heck, Markus Müller, Matthias Sperber, Sebastian Stücker and Alex
Waibel

A Topic-based Approach for Post-processing Correction of Automatic Translations . . . . . . . . 80
Mohamed Morchid, Stéphane Huet and Richard Dufour

The USFD SLT system for IWSLT 2014 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
Raymond W. M. Ng, Mortaza Doulaty, Rama Doddipatla, Wilker Aziz, Kashif Shah, Lucia Specia,
Thomas Hain, Oscar Saz, Madina Hasan and Ghada Alharbi

The Speech Recognition Systems of IOIT for IWSLT 2014 . . . . . . . . . . . . . . . . . . . . 92
Quoc Bao Nguyen, Tat Thang Vu and Chi Mai Luong

i



Phrase-based Language Modelling for Statistical Machine Translation . . . . . . . . . . . . . . . 96
Achraf Romdhane Ben, Salma Jamoussi, Kamel Smaili and Abdelmajid Ben Hamadou

The LIUM English-to-French Spoken Language Translation System and the Vecsys/LIUM Auto-
matic Speech Recognition System for Italian Language for IWSLT 2014 . . . . . . . . . . . 100

Anthony Rousseau, Loïc Barrault, Paul Deléglise, Yannick Estève, Holger Schwenk, Samir Ben-
nacef, Armando Muscariello and Stephan Vanni

LIMSI English-French Speech Translation System . . . . . . . . . . . . . . . . . . . . . . . . . 106
Natalia Segal, Hélène Bonneau-Maynard, Quoc Khanh Do, Alexandre Allauzen, Jean-Luc Gau-
vain, Lori Lamel and François Yvon

The NICT ASR System for IWSLT 2014 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
Peng Shen, Xugang Lu, Xinhui Hu, Naoyuki Kanda, Masahiro Saiko and Chiori Hori

The KIT Translation Systems for IWSLT 2014 . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
Isabel Slawik, Mohammed Mediani, Jan Niehues, Yuqi Zhang, Eunah Cho, Teresa Herrmann,
Thanh-Le Ha and Alex Waibel

NTT-NAIST Syntax-based SMT Systems for IWSLT 2014 . . . . . . . . . . . . . . . . . . . . 127
Katsuhito Sudoh, Graham Neubig, Kevin Duh and Katsuhiko Hayashi

The USTC Machine Translation System for IWSLT 2014 . . . . . . . . . . . . . . . . . . . . . 134
Shijin Wang, Yuguang Wang, Jianfeng Li, Yiming Cui and Lirong Dai

The NICT Translation System for IWSLT 2014 . . . . . . . . . . . . . . . . . . . . . . . . . . 139
Xiaolin Wang, Andrew Finch, Masao Utiyama, Taro Watanabe and Eiichiro Sumita

Polish - English Speech Statistical Machine Translation Systems for the IWSLT 2014 . . . . . . . 143
Krzysztof Wolk and Krzysztof Marasek

The RWTH Aachen Machine Translation Systems for IWSLT 2014 . . . . . . . . . . . . . . . . 150
Jörn Wübker, Stephan Peitz, Andreas Guta and Hermann Ney

Technical Papers 156
Advances in Dialectal Arabic Speech Recognition: A Study Using Twitter to Improve Egyptian ASR156
Ahmed Ali, Hamdy Mubarak and Stephan Vogel

Towards Simultaneous Interpreting: The Timing of Incremental Machine Translation and Speech
Synthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

Timo Baumann, Srinivas Bangalore and Julia Hirschberg
Word confidence estimation for speech translation . . . . . . . . . . . . . . . . . . . . . . . . . 169
Laurent Besacier, Benjamin Lecouteux, Luong Ngoc Quang, Kaing Hour and Marwa Hadj Salah.

Machine Translation of Multi-party Meetings: Segmentation and Disfluency Removal Strategies . 176
Eunah Cho, Jan Niehues and Alex Waibel

Empirical Dependency-Based Head Finalization for Statistical Chinese-, English-, and French-to-
Myanmar (Burmese) Machine Translation . . . . . . . . . . . . . . . . . . . . . . . . . . 184

Chenchen Ding, Ye Kyaw Thu, Masao Utiyama, Andrew Finch and Eiichiro Sumita
Discriminative Adaptation of Continuous Space Translation Models . . . . . . . . . . . . . . . . 192
Quoc Khanh Do, Alexandre Allauzen and François Yvon

Extracting Translation Pairs from Social Network Content . . . . . . . . . . . . . . . . . . . . . 200
Matthias Eck, Yury Zemlyanskiy, Joy Zhang and Alex Waibel

An Exploration of Segmentation Strategies in Stream Decoding . . . . . . . . . . . . . . . . . . 206
Andrew Finch, Xiaolin Wang and Eiichiro Sumita

Incremental Development of Statistical Machine Translation Systems . . . . . . . . . . . . . . . 214
Li Gong, Aurélien Max and François Yvon

Lexical Translation Model Using A Deep Neural Network Architecture . . . . . . . . . . . . . . 223
Thanh-Le Ha, Jan Niehues and Alex Waibel

Anticipatory Translation Model Adaptation for Bilingual Conversations . . . . . . . . . . . . . . 230
Sanjika Hewavitharana, Dennis Mehay, Sankaranarayanan Ananthakrishnan, Rohit Kumar and
John Makhoul

Offline Extraction of Overlapping Phrases for Hierarchical Phrase-Based Translation . . . . . . . 236
Sariya Karimova, Patrick Simianer and Stefan Riezler

Translations of the callhome Egyptian Arabic corpus for conversational speech translation . . . . 244
Gaurav Kumar, Yuan Cao, Ryan Cotterell, Chris Callison-Burch, Daniel Povey and Sanjeev Khu-
danpur

Improving In-Domain Data Selection For Small In-Domain Sets . . . . . . . . . . . . . . . . . . 249
Mohammed Mediani, Joshua Winebarger and Alex Waibel

Multilingual Deep Bottle Neck Features - A Study on Language Selection and Training Techniques 257
Markus Müller, Sebastian Stücker, Zaid Sheikh, Florian Metze and Alex Waibel

The NAIST-NTT TED Talk Treebank . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265
Graham Neubig, Katsuhito Sudoh, Yusuke Oda, Kevin Duh, Hajime Tsukada and Masaaki Nagata

Better Punctuation Prediction with Hierarchical Phrase-Based Translation . . . . . . . . . . . . . 271
Stephan Peitz, Markus Freitag and Hermann Ney

ii

Proceedings of the 11th International Workshop on Spoken Language Translation
Lake Tahoe, December 4th and 5th, 2014



Rule-Based Preordering on Multiple Syntactic Levels in Statistical Machine Translation . . . . . . 279
Ge Wu, Yuqi Zhang and Alex Waibel

Author Index 287

iii

Proceedings of the 11th International Workshop on Spoken Language Translation
Lake Tahoe, December 4th and 5th, 2014



Foreword

The International Workshop on Spoken Language Translation
(IWSLT) is an annual scientific workshop, associated with an
open evaluation campaign on Spoken Language Translation,
where both scientific papers and system descriptions are pre-
sented. The 11th International Workshop on Spoken Language
Translation takes place in Lake Tahoe, USA on Dec. 04 and
05, 2014. Since 2004, the annual workshop has been held in
Kyoto, Pittsburgh, Kyoto, Trento, Honolulu, Tokyo, Paris, San

Francisco, Hong Kong, and Heidelberg, and this year in Lake Tahoe.
One of the prominent research activities in Spoken Language Translation is the

work conducted by the Consortium for Speech Translation Advanced Research (C-
STAR), which was an international partnership of research laboratories engaged in
automatic translation of spoken language started in early 90s. The C-STAR members
had initiated the first shared task-type Spoken Language Translation workshop in 2004
and the IWSLT has been growing up with more participants and steering committee
members.

The IWSLT includes scientific papers in dedicated technical sessions, either in oral
or poster form. The contributions cover theoretical and practical issues in the field of
Machine Translation (MT) in general and Spoken Language Translation (SLT), includ-
ing Automatic Speech Recognition (ASR), Text-to-Speech Synthesis (TTS), and MT,
in particular:

• Speech and text MT
• Integration of ASR and MT
• MT and SLT approaches
• MT and SLT evaluation
• Language resources for MT and SLT
• Open source software for MT and SLT
• Adaptation in MT
• Simultaneous speech translation
• Speech translation of lectures
• Efficiency in MT
• Stream-based algorithms for MT
• Multilingual ASR and TTS
• Rich transcription of speech for MT
• Translation of on-verbal events

Submitted manuscripts were carefully peer-reviewed by three members of the pro-
gram committee and papers were selected based on their technical merit and relevance
to the conference. In addition to core statistical machine translation papers, the techni-
cal program covers a wide spectrum of topics related to Spoken Language Translation,
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ranging from issues related to real-time interpretation or to the translation of dialogs to
more practical issues related to the integration of speech and translation technologies.
Several important new annotated corpora will also be presented during the workshop.
In summary, the large number of submissions as well as the high quality of the sub-
mitted papers indicates the interest on Spoken Language Translation as a research field
and the growing interest in these technologies and their practical applications.

The results of the Spoken Language Translation evaluation campaigns organized
in the framework of the workshop are also an important part of IWSLT. Those eval-
uations are organized in the manner of competition. While participants compete for
achieving the best result in the evaluation, they come together afterwards, and discuss
and share their techniques that they used in their systems. In this respect, IWSLT
proposes challenging research tasks and an open experimental infrastructure for the
scientific community working on spoken and written language translation. This year,
the IWSLT evaluation offered a very challenging and appealing task on the Spoken
Language Translation of public speeches (TALK) in a variety of topics, including a
dedicated task to automatic speech recognition in order to cover the full pipeline of
speech translation.

For each task, monolingual and bilingual language resources, as needed, are pro-
vided to participants in order to train their systems, as well as sets of manual and auto-
matic speech transcripts (with n-best and lattices) and reference translations, allowing
researchers working only on written language translation to also participate. Moreover,
blind test sets are released and all translation outputs produced by the participants are
evaluated using several automatic translation quality metrics. For the primary submis-
sions of all MT and SLT tasks, a human evaluation was carried out as well.

Each participant in the evaluation campaign has been requested to submit a paper
describing the system and the utilized resources. A survey of the evaluation campaigns
is presented by the organizers.

This time IWSLT 2014 is co-located with the 2014 IEEE Spoken Language Tech-
nology Workshop (SLT 2014). SLT will be held in South Lake Tahoe, Nevada, on Dec.
7-10, 2014. The main theme of the SLT workshop will be "machine learning in spoken
language technologies". We expect that the co-location of IWSLT 2014 and SLT 2014
will attract more participants for further discussion on multi-lingual spoken language
technologies.

Apart from the technical content of the conference, spectacular scenery of Lake
Tahoe will welcome all participants to around-the-clock awesomeness on the shore of
the largest alpine lake in North America.

Welcome to Lake Tahoe!
Satoshi Nakamura, General Chair IWSLT 2014
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Keynotes

Speech translation for everyone - breaking down the bar-
riers
Arul Menezes, Microsoft Research

Abstract
Fifty years ago Star Trek had the Universal Translator. Thirty-five years ago we

were introduced to the babel fish in The Hitchhiker’s Guide to the Galaxy. Decades
later, is reality finally catching up to science fiction? Given the enormous strides made
in speech recognition and machine translation over the last decade, is this just as matter
of chaining speech recognition and machine translation together?

In the Skype Translator project we set ourselves an ambitious goal - to enable suc-
cessful open-domain conversations between Skype users in different parts of the world,
speaking different languages. As one might imagine, putting together two error-prone
technologies such as speech recognition and machine translation raises some unique
challenges.

In this talk, I will share what we have learned over the course of the Skype Trans-
lator project. I will discuss what we are doing to bridge the gap between ASR and MT,
how we are adapting our ASR and MT systems to the real world challenges presented
by our open-domain conversational scenario, and what it takes to get this technology
into the hands of real users. I will also touch upon some of the open issues and chal-
lenges we still face.

Bio
Arul Menezes heads the Machine Translation team at Microsoft Research. Over

the past 15 years, he has driven Machine Translation at Microsoft Research from a
basic research project to a web-scale production service with a variety of offerings
for consumers and businesses, and millions of users worldwide. These include the
Bing Translator and the Microsoft Translator Hub customization service, as well as the
upcoming Skype Translator product. The Microsoft MT system is based on the treelet
translation approach to syntactic statistical MT, co-invented by Arul, Chris Quirk and
Colin Cherry. The MSR MT team integrates research and product development in a
single team, covering everything from MT modelling and algorithms to data gathering
and delivery of the live web service. This eliminates the traditional "tech transfer" from
research to product, and enables the team to get research breakthroughs into customer
hands without delay. Arul was educated at the Indian Institute of Technology, Bombay
and at Stanford University.
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Report on the 11th IWSLT Evaluation Campaign, IWSLT 2014

Mauro Cettolo(1) Jan Niehues(2) Sebastian Stüker(2) Luisa Bentivogli(1) Marcello Federico(1)

(1) FBK - Via Sommarive 18, 38123 Trento, Italy
(2) KIT - Adenauerring 2, 76131 Karlsruhe, Germany

Abstract
The paper overviews the 11th evaluation campaign organized
by the IWSLT workshop. The 2014 evaluation offered mul-
tiple tracks on lecture transcription and translation based on
the TED Talks corpus. In particular, this year IWSLT in-
cluded three automatic speech recognition tracks, on English,
German and Italian, five speech translation tracks, from En-
glish to French, English to German, German to English, En-
glish to Italian, and Italian to English, and five text transla-
tion track, also from English to French, English to German,
German to English, English to Italian, and Italian to English.
In addition to the official tracks, speech and text translation
optional tracks were offered, globally involving 12 other lan-
guages: Arabic, Spanish, Portuguese (B), Hebrew, Chinese,
Polish, Persian, Slovenian, Turkish, Dutch, Romanian, Rus-
sian. Overall, 21 teams participated in the evaluation, for
a total of 76 primary runs submitted. Participants were also
asked to submit runs on the 2013 test set (progress test set), in
order to measure the progress of systems with respect to the
previous year. All runs were evaluated with objective met-
rics, and submissions for two of the official text translation
tracks were also evaluated with human post-editing.

1. Introduction
This paper overviews the results of the 2014 evaluation cam-
paign organized by the International Workshop of Spoken
Language Translation. The IWSLT evaluation has been run-
ning now for over a decade and has offered along these years
a variety of speech translation tasks [1, 2, 3, 4, 5, 6, 7, 8, 9,
10]. The 2014 IWSLT evaluation continued along the line
set in 2010, by focusing on the translation of TED Talks, a
collection of public speeches covering many different topics.
As in the previous two years, the evaluation included tracks
for all the core technologies involved in the spoken language
translation task, namely:

• Automatic speech recognition (ASR), i.e. the conver-
sion of a speech signal into a transcript,

• Spoken language translation (SLT), that addressed the
conversion and translation of a speech signal into a
transcript in another language,

• Machine translation (MT), i.e. the translation of a pol-
ished transcript into another language.

However, with respect to previous rounds, new languages
have been added to each track. The ASR track that pre-
viously included German and English, was extended by
Italian. The SLT and MT track offered official English-
French, English-German, German-English, English-Italian,
and Italian-English translation directions. Besides the official
evaluation tracks, many other optional translation directions
were also offered. Optional SLT directions were English-
Arabic and English-Chinese. Optional MT translation di-
rections were: English from/to Arabic, Spanish, Portuguese
(B), Hebrew, Chinese, Polish, Persian, Slovenian, Turkish,
Dutch, Romanian, and Russian. For each official and op-
tional translation direction, training and development data
were supplied by the organizers through the workshop’s web-
site. Major parallel collections made available to the partici-
pants were the WIT3 [11] corpus of TED talks, all data from
the WMT 2014 workshop [12], the MULTIUN corpus, and
the SETimes parallel corpus. A list of monolingual resources
was provided too, that includes both freely available corpora
and corpora available from LDC. Test data were released at
the beginning of each test period, requiring participants to
return one primary run and optional contrastive runs within
one week. The schedule of the evaluation was organized as
follows: June 2, release of training data; Sept 1–10, ASR test
period; Sept 16–25, SLT test period (official directions); Sept
26–Oct 5, MT test period (official directions); Oct 6–17, MT
and SLT test period of all optional directions.

All runs submitted by participants were evaluated with
automatic metrics. In addition, manual evaluation was car-
ried out for two MT tracks, namely the English-French and
English-German tracks. Following the methodology intro-
duced last year, systems were evaluated by calculating HTER
values on post-edits created by professional translators. The
rational behind this evaluation is to assess the utility of an
MT output by measuring the post-editing effort needed by a
professional translator to fix it.

This year, 21 sites participated (see Table 1) submitting a
total of 76 primary runs: 15 to the ASR track, 16 to the SLT
track, and 45 to the MT track (see Sections 3.3, 4.3, 5.3 for
details).

In the rest of the paper we first outline the main goals of
the IWSLT evaluation and then each single track in detail,
in particular: its specifications, supplied language resources,
evaluation methods, and results. The paper ends with some
concluding remarks about the experiences gained in this eval-
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uation exercise, followed by appendixes that complement the
information given in the specific sections.

2. TED Talks

2.1. TED events

The translation of TED talks was introduced for the first time
at IWSLT 2010. TED is a nonprofit organization that ”in-
vites the world’s most fascinating thinkers and doers [...] to
give the talk of their lives”. Its website1 makes the video
recordings of the best TED talks available under the Creative
Commons license. All talks have English captions, which
have also been translated into many languages by volunteers
worldwide. In addition to the official TED events held in
North America, a series of independent TEDx events are reg-
ularly held around the world, which share the same format of
the original TED talks but are hold in the language of the
hosting country. Recently, an effort was made to set up a
web repository [11] that distributes dumps of the available
TED talks transcripts and translations under form of parallel
texts, ready to use for training and evaluating MT systems.

Besides representing a popular benchmark for spoken
language technology, the TED Talks task embeds interesting
research challenges which are unique among the available
speech recognition and machine translation benchmarks.
TED Talks is a collection of rather short speeches (max
18 minutes each, roughly equivalent to 2,500 words) which
cover a wide variety of topics. Each talk is delivered in a bril-
liant and original style by a very skilled speaker and, while
addressing a wide audience, it pursues the goal of both enter-
taining and persuading the listeners on a specific idea. From
the point of view of ASR, TED talks require copying with
background noise – e.g. applauses and laughs by the pub-
lic –, different accents including non native speakers, varying
speaking rates, prosodic aspects, and, finally, narrow topics
and personal language styles. From an application perspec-
tive, TED Talks transcription is the typical life captioning
scenario, which requires producing polished subtitles in real-
time.

From the point of view of machine translation, translat-
ing TED Talks implies dealing with spoken rather than writ-
ten language, which is hence expected to be structurally less
complex, formal and fluent. Moreover, as human translations
of the talks are required to follow the structure and rythm of
the English captions,2 a lower amount of rephrasing and re-
ordering is expected than in ordinary translation of written
documents.

From an application perspective, TED Talks suggest
translation tasks ranging from off-line translation of written
captions, up to on-line speech translation, requiring a tight
integration of MT with ASR possibly handling stream-based
processing.

1http://www.ted.com
2See recommendations to translators in http://translations.ted.org/wiki.

3. ASR Track
3.1. Definition

The goal of the Automatic Speech Recognition (ASR) track
for IWSLT 2014 was to transcribe English TED talks, as well
as German and Italian TEDx talks. The speech in TED lec-
tures is in general planned, well articulated, and recorded in
high quality. The main challenges for ASR in these talks are
to cope with a large variability of topics, the presence of non-
native speakers, and the rather informal speaking style. For
the TEDx talks the recording conditions are a little bit more
difficult than for the English TED talks. While the TEDx
talks aim to mimic the TED talks, they are not as well pre-
pared and well rehearsed as the TED lectures, and recording
is often done by amateurs resulting in often poorer recording
quality than for the TED lectures.

The result of the recognition of the talks is used for two
purposes. It is used to measure the performance of ASR sys-
tems on the talks and it is used as input for the spoken lan-
guage translation evaluation (SLT), see Section 4.

3.2. Evaluation

Participants had to submit the results of the recognition of
the tst2014 set in CTM format. The word error rate was
measured case-insensitive. After the end of the evaluation
a preliminary scoring was performed with the first set of
references. This was followed by an adjudication phase in
which participants could point out errors in the reference
transcripts. The adjudication results were collected and com-
bined into the final set of references with which the official
scores were calculated.

In order to measure the progress of the systems over the
years on English and German, participants also had to pro-
vide results on the test set from 2013, i.e. tst2013.

3.3. Submissions

For this year’s evaluation we received primary submissions
from eight sites as well as one combined submission by the
EU-BRIDGE project. Seven sites participated in the English
evaluation, three sites in the German evaluation and four sites
in the Italian one. For English we further received a total of
seven contrastive submissions from five sites. For German
we received three contrastive submissions from one partici-
pant. For Italian we receieved five contrastive submissions
from three sites. Also, for English we received a joint sub-
mission by the project EU-BRIDGE which was a ROVER
combination of the partners’ outputs and for which no sepa-
rate system description was submitted.

3.4. Results

The detailed results of the primary submissions of the eval-
uation in terms of word error rate (WER) can be found in
Appendix A.1. The word error rate of the submitted systems
in in the range of 8.4%–19.7% for English, 24.0%–38.8% for
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Table 1: List of Participants

EU-BRIDGE RWTH& UEDIN& KIT& FBK[13]
FBK Fondazione Bruno Kessler, Italy [14, 15]
HKUST Hong Kong University of Science and Technology, Hong Kong [16]
IOIT Inst. of Inform. and Techn., Vietn. Acad. of Science and Techn. & Thai Nguyen University, Vietnam[17]
KIT Karlsruhe Institute of Technology, Germany [18, 19]
KLE Pohang University of Science and Technology, Republic of Korea
LIA Laboratoire Informatique d’Avignon (LIA) University of Avignon, France [20]
LIMSI LIMSI - LIMSI, France [21]
LIUM LIUM, University of Le Mans, France [22]
MIRACL MIRACL Laboratory Pôle Technologique, Tunisia & LORIA Nancy, France [23]
MITLL-AFRL Mass. Institute of Technology/Air Force Research Lab., USA
NICT National Institute of Communications Technology, Japan [24, 25]
NTT-NAIST NTT Communication Science Labs, Japan & NAIST[26]
PJIIT Polish-Japanese Institute of Information Technology, Poland [27]
RWTH Rheinisch-Westfälische Technische Hochschule Aachen, Germany [28]
SFAX Sfax University, Tunisia
UEDIN University of Edinburgh, United Kingdom [29, 30]
UMONTREAL Université de Montréal, Canada
USFD University of Sheffield, United Kingdom [31]
USTC National Engineering Laboratory of Speech and Lang. Inform. Proc., Univ. of Science and Techn. of China [32]
VECSYS-LIUM Vecsys Technologies, France & University of Le Mans, France [22]

German, and 21.9%–25.4% for Italian.

In German, the fact that TEDx have sometimes worse
recording conditions than TED talks was reflected by the fact
that two talks in the German tst2014 had WERs above 40%.
WERs for all other talks were in the range from 9% to 32%.

For English, it can be seen that all participants from
IWSLT 2013 made progress, many significant progress, e.g.,
bringing down the WER from 13.5% to 10.6% on tst2013,
a relative reduction of 21% over the course of one year.
For German, the best performing system only made mi-
nor progress, while one of the runner-ups made significant
progress and one participant essentially stood the same.

4. SLT Track

4.1. Definition

The SLT track required participants to translate the English,
German and Italian talks of tst2014 from the audio signal
(see Section 3). The challenge of this translation task over
the MT track is the necessity to deal with automatic, and in
general error prone, transcriptions of the audio signal, instead
of correct human transcriptions.

For German and Italian, participants had to translate into
English. For English as source language, participants had
to translate into French. In addition, participants could also
optionally translate from English into one of the following
languages: German, Italian, Arabic and Mandarin Chinese.

4.2. Evaluation

For the evaluation, participants could choose to either use
their own ASR technology, or to use ASR output provided
by the conference organizers. In order to facilitate scoring,
participants had to segment the audio according to the man-
ual reference segmentation provided by the organizers of the
evaluation.

For English, the ASR output provided by the organizers
was a ROVER combination of the output from five submis-
sions to the ASR track. The result of the ROVER had a WER
of 8.2%. For German and Italian we used the two single best
scored submissions, as ROVER combination with other sys-
tems did not give any performance gains.

The results of the translation had to be submitted in the
same format as for the machine translation track (see Sec-
tion 5).

4.3. Submissions

We received 16 primary and 31 contrastive submissions from
nine participants, English to French receiving the most sub-
missions.

4.4. Results

The detailed results of the automatic evaluation in terms of
BLEU and TER can be found in Appendix A.1.

4

Proceedings of the 11th International Workshop on Spoken Language Translation
Lake Tahoe, December 4th and 5th, 2014



Table 2: Monolingual resources for official language pairs

data set lang sent token voc

train
De 183k 3.36M 124.7k
En 188k 3.81M 63.4k
Fr 186k 4.00M 77.0k
It 185k 3.49M 90.2k

5. MT Track
5.1. Definition

The MT TED track basically corresponds to a subtitling
translation task. The natural translation unit considered by
the human translators volunteering for TED is indeed the sin-
gle caption — as defined by the original transcript — which
in general does not correspond to a sentence, but to fragments
of it that fit the caption space. While translators can look at
the context of the single captions, arranging the MT task in
this way would make it particularly difficult, especially when
word re-ordering across consecutive captions occurs. For this
reason, we preprocessed all the parallel texts to re-build the
original sentences, thus simplifying the MT task.

For each official and optional translation direction, in-
domain training and development data were supplied through
the website of WIT3 [11], while out-of-domain training data
through the workshop’s website. As usual, some of the talks
added to the TED repository during the last year have been
used to define the new evaluation sets (tst2014), while the
remaining new talks have been included in the training sets.
For reliably assessing progress of MT systems over the years,
the evaluation sets tst2013 of edition 2013 were distributed
together with tst2014 as progressive test sets, when available.
Development sets (dev2010, tst2010, tst2011 and tst2012)
are either the same of past editions or, in case of new lan-
guage pairs, have been built upon the same talks.

Evaluation sets tst2014 of DeEn and ItEn MT tasks de-
rive from those prepared for ASR/SLT tracks, which consist
of TEDx talks delivered in German and Italian language, re-
spectively; therefore, no overlap exists with any other TED
talk involved in other tasks. Since the DeEn TEDx based
MT task was proposed in 2013 as well, the tst2013 has been
released as progressive test set; on the contrary, it is the first
time that Italian is involved in ASR/SLT tracks, therefore no
evaluation set is available for assessing progress. A single
TEDx based development set was released for each pair, to-
gether with standard TED based development sets dev2010,
tst2010, tst2011 and tst2012 sets.

Tables 2 and 3 provides statistics on in-domain texts sup-
plied for training, development and evaluation purposes for
the official directions.

MT baselines were trained from TED data only, i.e. no
additional out-of-domain resources were used. The standard
tokenization via the tokenizer script released with the Eu-
roparl corpus [33] was applied to all languages, with the
exception of Chinese and Arabic languages, which were

Table 3: Bilingual resources for official language pairs.

MT task set sent tokens talks
En→Fr En Fr

train 179k 3.63M 3.88M 1415
TED.dev2010 887 20,1k 20,2k 8
TED.tst2010 1,664 32,0k 33,9k 11
TED.tst2011 818 14,5k 15,6k 8
TED.tst2012 1,124 21,5k 23,5k 11
TED.tst2013 1,026 21,7k 23,3k 16
TED.tst2014 1,305 24,8k 27,5k 15

En↔De En De
train 172k 3.46M 3.24M 1361
TED.dev2010 887 20,1k 19,1k 8
TED.tst2010 1,565 32,0k 30,3k 11
TED.tst2011 1,433 26,9k 26,3k 16
TED.tst2012 1,700 30,7k 29,2k 15

→ TED.tst2013 993 20,9k 19,7k 16
TED.tst2014 1,305 24,8k 23,8k 15

←
TEDx.dev2012 1,165 21,6k 20,8k 7
TEDx.tst2013 1,363 23,3k 22,4k 9
TEDx.tst2014 1,414 28,1k 27,6k 10

En↔It En It
train 182k 3.68M 3.44M 1434
TED.dev2010 887 20,1k 17,9k 8
TED.tst2010 1,529 31,0k 28,7k 10
TED.tst2011 1,433 26,9k 24,5k 16
TED.tst2012 1,704 30,7k 28,2k 15

→ TED.tst2013 1,402 30,1k 28,7k 21
TED.tst2014 1,183 22,6k 21,2k 14

← TEDx.dev2014 1,056 28,9k 28,6k 13
TEDx.tst2014 883 25,9k 26,5k 13

preprocessed by, respectively: the Stanford Chinese Seg-
menter [34] and the QCRI-normalizer.3

The baselines were developed with the Moses toolkit.
Translation and lexicalized reordering models were trained
on the parallel training data; 5-gram LMs with improved
Kneser-Ney smoothing were estimated on the target side of
the training parallel data with the IRSTLM toolkit. The
weights of the log-linear interpolation model were optimized
with the MERT procedure provided with Moses, mostly on
the development sets tst2010; the exceptions are: TEDx
tasks, where the TEDx based development sets were used;
the two pairs involving Slovenian, where dev2012 were em-
ployed.

5.2. Evaluation

The participants to the MT track had to provide the results of
the translation of the test sets in NIST XML format. The out-
put had to be case-sensitive and had to contain punctuation

3QCRI-normalizer was specifically developed for IWSLT Evaluation
Campaigns by P. Nakov and F. Al-Obaidli at Qatar Computing Research
Institute.
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(case+punc).
The quality of the translations was measured automati-

cally against the human translations created by the TED open
translation project, and by human subjective evaluation (Sec-
tion 5.5). Tokenization scripts were applied automatically to
all run submissions prior to evaluation.

Evaluation scores were calculated for the two automatic
standard metrics BLEU and TER, as implemented in mteval-
v13a.pl4 and tercom-0.7.255, respectively.

5.3. Submissions

We received submissions from 14 different sites. On official
pairs, the total number of primary runs is 39: 20 on tst2014
and 19 on tst2013; 15 primary runs regard the EnFr pair, 10
the EnDe and 14 the DeEn; in addition, we were asked to
evaluate also 64 contrastive runs.

Concerning the optional pairs, we received 48 primary
runs (25 on tst2014 and 23 on tst2013) and 20 contrastive
submissions. The tasks that attracted the most interest are
those involving Chinese: 8 primary runs were submitted for
EnZh, 8 for ZhEn. The other submissions involve Arabic,
Polish, Farsi, Hebrew, Turkish and Slovenian.

5.4. Results

Table 4: BLEU and TER scores of baseline SMT systems on
all tst2014 sets. (†) TEDx test set. (⋆) Char-level scores.

pair
direction

→ ←
BLEU TER BLEU TER

En

Fr 32.07 48.62 – –
De 18.33 62.11 †17.89 †64.91
It 27.15 53.19 †26.12 †55.30
Ar 11.13 73.01 20.59 62.62
Es 31.31 48.29 33.88 45.96
Fa 11.31 71.20 16.74 72.02
He 15.91 65.62 24.41 58.38
Nl 22.77 58.38 27.82 52.98
Pl 9.63 82.81 14.28 68.96
Pt 31.25 47.25 36.44 42.80
Ro 18.05 65.25 25.06 54.62
Ru 11.74 71.99 15.91 69.73
Sl 8.46 73.94 14.27 71.03
Tr 7.75 78.69 12.88 77.15
Zh ⋆16.49 ⋆79.50 11.74 72.31

First of all, for reference purposes Table 4 shows BLEU
and TER scores on the tst2014 evaluation sets of the baseline
systems we developed as described in Section 5.1.

The results on the official test set for each participant are
shown in Appendix A.1. For most languages, we show the
case-sensitive and case-insensitive BLEU and TER scores.

4http://www.itl.nist.gov/iad/mig/tests/mt/2009/
5http://www.cs.umd.edu/ snover/tercom/

In contrast to the other language pairs, for English to Chinese
character-level scores are reported.

These results also show again the scores of the baseline
system. Thereby, it is possible to see the improvements of the
submitted systems on the different languages over the base-
line system.

In Appendix A.2 the results on the progress test sets
test2013 are shown. When comparing the results to the sub-
missions from last year, the performance could be improved
in nearly all tasks.

5.5. Human Evaluation

Human evaluation was carried out on primary runs submit-
ted by participants to two of the official MT TED tracks,
namely the MT English-German (EnDe) track and MT
English-French (EnFr) track. Following the methodology
introduced last year, human evaluation was based on Post-
Editing, and HTER (Human-mediated Translation Edit Rate)
was adopted as the official evaluation metric to rank the sys-
tems.

Post-Editing, i.e. the manual correction of machine trans-
lation output, has long been investigated by the translation
industry as a form of machine assistance to reduce the costs
of human translation. Nowadays, Computer-aided transla-
tion (CAT) tools incorporate post-editing functionalities, and
a number of studies [35, 36] demonstrate the usefulness of
MT to increase professional translators’ productivity. The
MT TED task offered in IWSLT can be seen as an interesting
application scenario to test the utility of MT systems in a real
subtitling task.

From the point of view of the evaluation campaign, our
goal was to adopt a human evaluation framework able to
maximize the benefit to the research community, both in
terms of information about MT systems and data and re-
sources to be reused. With respect to other types of human
assessment, such as judgments of translation quality (i.e. ad-
equacy/fluency and ranking tasks), the post-editing task has
the double advantage of producing (i) a set of edits pointing
to specific translation errors, and (ii) a set of additional ref-
erence translations. Both these byproducts are very useful
for MT system development and evaluation. Furthermore,
HTER[37] - which consists of measuring the minimum edit
distance between the machine translation and its manually
post-edited version - has been shown to correlate quite well
with human judgments of MT quality.

The human evaluation setup and the collection of post-
editing data are presented in Section 5.5.1, whereas the re-
sults of the evaluation are presented in Section 5.5.2.

5.5.1. Evaluation Setup and Data Collection

The human evaluation (HE) dataset created for each MT
track was a subset of the corresponding 2013 progress test
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set (tst2013).6 Both the EnDe and EnFr tst2013 datasets
are composed of 16 TED Talks, and we selected around the
initial 60% of each talk. This choice of selecting a consecu-
tive block of sentences for each talk was determined by the
need of realistically simulating a caption post-editing task on
several TED talks. The resulting HE sets are composed of
628 segments for EnDe and 622 segments for EnFr, both
corresponding to around 11,000 words.

In order to evaluate the MT systems, the bilingual post-
editing task was chosen, where professional translators are
required to post-edit the MT output directly according to the
source sentence. Bilingual post-editing is expected to give
more accurate results than monolingual post-editing as post-
editors do not depend on an given - and possibly imprecise
- translation. Then, HTER scores were calculated on the
created post-edits. HTER [37] is a semi-automatic metric
derived from TER (Translation Edit Rate). TER measures
the amount of editing that a human would have to perform
to change a machine translation so that it exactly matches a
given reference translation. HTER is a variant of TER where
a new reference translation is generated by applying the min-
imum number of post-edits to the given MT output. This new
targeted reference is then used as the only reference transla-
tion to calculate the TER of the MT output.

An interesting outcome of last year’s manual evaluation
[10] was that the most informative and reliable HTER was
not obtained by using only the targeted reference but by ex-
ploiting all the post-edits of the evaluated MT outputs. Ac-
cording to these results, also this year systems were officially
ranked according to HTER calculated on multiple references.

As for the systems to be evaluated, this year we re-
ceived five primary runs for the EnDe track and seven for
the EnFr track. All the five EnDe MT outputs were post-
edited, whereas for the EnFr track we decided to post-edit
only five MT outputs out of the seven received. This reduc-
tion is not supposed to affect the official evaluation results -
since all the participating systems are evaluated with HTER
based on multiple post-edits - and it allowed us to respect the
budget limitations while offering the community five addi-
tional reference translations for a high number of segments
(around 60% of the test sets) and for two different language
pairs. The five MT outputs selected for post-editing in the
EnFr task are the top-5 ranked systems according to auto-
matic evaluation (see Appendix A).

In the preparation of the post-editing data to be collected,
some constraints were identified to ensure the soundness of
the evaluation: (i) each translator must post-edit all segments
of the HE set, (ii) each translator must post-edit the segments
of the HE set only once, and (iii) each MT system must be
equally post-edited by all translators. Furthermore, in order
to cope with the variability of post-editors (i.e. some trans-
lators could systematically post-edit more than others) we

6Since all the data produced for human evaluation will be made publicly
available thorough the WIT3 repository, we used the 2013 test set in order
to keep the 2014 test set blind to be used as a progress test for next year’s
evaluation.

Table 5: En-De task: Post-editing information for each Post-
editor

PEditor PE Effort std-dev Sys TER std-dev
PE 1 32.17 18.80 56.05 20.23
PE 2 19.69 13.56 56.32 20.34
PE 3 40.91 17.23 56.18 19.58
PE 4 27.56 14.71 55.93 20.02
PE 5 24.99 15.62 55.63 19.88

Table 6: En-Fr task: Post-editing information for each Post-
editor

PEditor PE Effort std-dev Sys TER std-dev
PE 1 34.96 20.21 42.60 17.61
PE 2 17.47 14.76 42.81 17.98
PE 3 23.68 14.17 43.02 17.74
PE 4 39.65 20.47 42.27 17.78
PE 5 19.73 14.07 42.86 17.72

devised a scheme that dispatches MT outputs to translators
both randomly and satisfying the uniform assignment con-
straints. For each task, five documents were hence prepared
including all source segments of the HE set and, for each
source segment, one MT output selected from one of the five
systems.

Documents were delivered to a language service provider
together with instructions to be passed on to the translators,
and the post-editing tasks were run using an enterprise-level
CAT tool developed under the MateCat project7. Both the
post-editing interface and the guidelines given to translators
are presented in Appendix B.

For each task, the resulting collected data consist of five
new reference translations for each of the sentences of the HE
set. Each one of these five references represents the targeted
translation of the system output from which it was derived.
From the point of view of the system output, one targeted
translation and other four translations are available.

The main characteristics of the work carried out by post-
editors are presented in Table 5 for the EnDe task and in
Table 6 for the EnFr task, and largely confirm last year’s
findings. In the tables, the post-editing effort for each trans-
lator is given. Post-editing effort is to be interpreted as the
number of actual edit operations performed to produce the
post-edited version and - consequently - it is calculated as
the HTER of all the system sentences post-edited by each
single translator. It is interesting to see that the PE effort
is similar for both language pairs, and also highly variable
among post-editors, ranging from 19.69% to 40.91% for the
EnDe task, and from 17.47% to 39.65% for the EnFr task.
Data about weighted standard deviation confirm post-editor
variability, showing that the five translators produced quite
different post-editing effort distributions.

7www.matecat.com
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To further study post-editor variability, we exploited the
official reference translations available for the two TED
tracks and we calculated the TER of the MT outputs assigned
to each translator for post-editing (“Sys TER” Column in Ta-
bles 5 and 6), as well as the related standard deviation.

As we can see from the tables, the documents presented
to translators (composed of segments produced by different
systems) are very homogeneous, as they show very similar
TER scores and standard deviation figures. This also con-
firms that the procedure followed in data preparation was ef-
fective.

The variability observed in post-editing effort - despite
the similarity of the input documents - is most probably due
to translators’ subjectivity in carrying out the post-editing
task. Thus, post-editor variability is an issue to be addressed
to ensure a sound evaluation of the systems.

5.5.2. Evaluation Results

As anticipated above, last year’s human evaluation results
demonstrated that HTER computed against all the references
produced by all post-editors allowed a more reliable and
consistent evaluation of MT systems with respect to HTER
calculated against the targeted reference only. Indeed, the
HTER reduction obtained using all post-edits clearly showed
that exploiting all the available reference translations is a vi-
able way to control and overcome post-editors’ variability.
For this reason, also this year systems were officially ranked
according to HTER calculated on multiple references.

For the EnDe task, HTER was calculated using all the
five post-edits available, i.e. for each system the targeted
translation and the additional four references were used. For
the EnFr task, since the post-edits for two MT outputs had
not been created, in order to avoid biases only four post-edits
out of five were used to calculate HTER, namely excluding
from each system’s evaluation its targeted translation.

The official results of human evaluation are given in Ta-
bles 7 and 8, which also present a comparison of HTER
scores and rankings with TER results - on the HE set and
on the full test set - calculated against the official reference
translation used for automatic evaluation (see Section 5.2).8

For the EnFr task, the official HTER results presented in
Table 8 for FBK and MIRACL (which do not have a corre-
sponding post-edit) are those obtained on the combination of
the four post-edits which gave the best results.

In general, the very low HTER results obtained in both
tasks demonstrate that the overall quality of the systems is
very high. Moreover, all systems are very close to each other.
To establish the reliability of system ranking, for all pairs of
systems we calculated the statistical significance of the ob-
served differences in performance. Statistical significance
was assessed with the approximate randomization method
[38], a statistical test well-established in the NLP community
[39] and that, especially for the purpose of MT evaluation,

8Note that since HTER and TER are edit-distance measures, lower num-
bers indicate better performances

Table 7: En-De Task: Official human evaluation results
System HTER TER TER
Ranking HE Set HE Set Test Set

5 PErefs ref ref
EU-BRIDGE 19.22 54.55 53.62
UEDIN 19.93 56.32 55.12
KIT 20.88 54.88 53.83
NTT-NAIST 21.32 54.68 53.86
KLE 28.75 59.67 58.27
Rank Corr. 0.60 0.70

Table 8: En-Fr Task: Official human evaluation results
System HTER HTER TER TER
Ranking HE Set HE Set HE Set Test Set

4 PErefs 5 PErefs ref ref
EU-BRIDGE 19.21UEDIN 16.48 42.64 43.27
RWTH 19.27UEDIN 16.55 41.82 42.58
KIT 20.89MIRACL 17.64 42.33 43.09
UEDIN 21.52MIRACL 17.23 43.28 43.80
MITLL-AFRL 22.64MIRACL 18.69 43.48 44.05
FBK 22.90MIRACL 22.29 44.28 44.83
MIRACL 33.61 32.90 52.19 51.96
Rank Corr. 0.96 0.90 0.90

has been shown [40] to be less prone to type-I errors than the
bootstrap method [41]. The approximate randomization test
was based on 10,000 iterations, and differences were consid-
ered statistically significant at p < 0.01. According to this
test, for both tasks a winning system cannot be indicated, as
there is no system that is significantly better than all other
systems. In particular, for the EnDe task only the bottom-
ranking system (KLE) is significantly worse than all the other
systems. For the EnFr task, in Table 8 we report - next to
the HTER score of each system - the name of the first system
in the ranking with respect to which differences are statisti-
cally significant. We can see that only the two top-ranking
systems are significantly better than the four bottom-ranking
systems (from UEDIN to MIRACL), whereas all the other sys-
tems significantly differ only with respect to MIRACL.

Furthermore, for comparison purposes, Table 8 presents
additional HTER results calculated on all the five post-edits
available for the EnFr task. First, it is interesting to note the
further HTER reduction achieved, especially for the five top-
scoring systems since their corresponding targeted reference
was added. Also, comparing the two language pairs, we see
that the HTER scores obtained for EnFr with five reference
translations are overall lower than those obtained for EnDe,
indicating that systems translating into French perform better
than systems translating into German.

A number of additional observations can be drawn by
comparing the official HTER results with TER results. In
general, for both tasks we can see that HTER reduces the
edit rate of more than 50% with respect to TER. Moreover,
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the correlation between evaluation metrics is measured using
Spearman’s rank correlation coefficient ρ ∈ [-1.0, 1.0], with
ρ = 1.0 if all systems are ranked in same order, ρ = -1.0 if
all systems ranked in reverse order and ρ = 0.0 if no corre-
lation exists. We can see from the tables that TER rankings
correlate well with the official HTER.

To conclude, the post-editing task introduced this year for
manual evaluation brought benefit to the IWSLT community,
and in general to the MT field. In fact, producing post-edited
versions of the participating systems’ outputs allowed us to
carry out a quite informative evaluation by minimizing the
variability of post-editors, who naturally tend to diverge from
the post-editing guidelines and personalize their translations.
Moreover, a number of additional reference translations will
be available for further development and evaluation of MT
systems.

6. Conclusions

We have reported on the evaluation campaign organized for
the eleventh edition of the IWSLT workshop. The evaluation
has addressed three tracks: automatic speech recognition of
talks (in English, German, and Italian), speech-to-text trans-
lation, and text-to-text translation, both from German to En-
glish, English to German, and English to French. Besides
the official translation directions, many optional translation
tasks were available, too, including 12 additional languages.
For each task, systems had to submit runs on three different
test sets: a newly created official test set, and a progress test
set created and used for the 2013 evaluation. This year, 21
participants took part in the evaluation, submitting a total of
76 primary runs, which were all scored with automatic met-
rics. We also manually evaluated runs of the English-German
and English-French text translation tracks. In particular, we
asked professional translators to post-edit system outputs on
a subset of the 2013 progress test set, in order to produce
close references for them. While we have observed a sig-
nificant variability among translators, in terms of post-edit
effort, we could obtain more reliable scores by using all the
produced post-edits as reference translations. By using the
HTER metric, for both tracks the post-edit effort of the best
performing system results remarkably low, namely around
19%. Considering that this is still an upper bound of the
ideal HTER score, this percentage of post-editing seems to
be another strong argument supporting the utility of machine
translation for human translators.
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Appendix A. Automatic Evaluation
“case+punc” evaluation : case-sensitive, with punctuations tokenized

“no case+no punc” evaluation : case-insensitive, with punctuations removed

A.1. Official Testset (tst2014)
· All the sentence IDs in the IWSLT 2014 test set were used to calculate the automatic scores for each run submission.
· ASR and MT systems are ordered according to the WER and BLEU metrics, respectively.
· All automatic evaluation metric scores are given as percent figures (%).

TED : ASR English (ASREN )
System WER (# Errors)

NICT 8.4 (1,831)
EU-BRIDGE 9.8 (2,138)

MITLL-AFRL 9.9 (2,153)

KIT 11.4 (2,475)

FBK 11.4 (2,492)

LIUM 12.3 (2,689)

UEDIN 12.7 (2,763)

IOIT 19.7 (4,283)

TED : ASR German (ASRDE )
System WER (# Errors)

KIT 24.0 (5,660)
UEDIN 35.7 (8,438)

FBK 38.8 (9,167)

TED : ASR Italian (ASRIT )
System WER (# Errors)

VECSYS-LIUM 21.9 (5,165)
MITLL-AFRL 23.0 (5,440)

FBK 23.8 (5618)

KIT 25.4 (5,997)

TED : SLT English-French (SLTEnFr)

System case sensitive case insensitive
BLEU TER BLEU TER

KIT 27.45 57.80 28.16 56.87

RWTH 26.94 57.29 27.74 56.22
LIUM 26.82 59.03 27.85 57.69

UEDIN 25.50 57.23 26.26 56.24

FBK 25.39 59.53 26.11 58.57

LIMSI 25.18 60.70 25.88 59.69

USFD 23.45 59.94 24.14 58.97

TED : SLT English-German (SLTEnDe)

System case sensitive case insensitive
BLEU TER BLEU TER

KIT 17.05 68.01 17.58 66.97
UEDIN 17.00 68.36 17.51 67.30

USFD 14.75 70.15 15.24 69.15

KLE 13.00 71.70 13.64 70.33

TED : SLT German-English (SLTDeEn)

System case sensitive case insensitive
BLEU TER BLEU TER

EU-BRIDGE 19.09 63.80 19.59 62.94
KIT 18.34 63.91 18.85 62.99

UEDIN 17.67 66.04 18.18 65.12

RWTH 17.24 65.04 17.78 64.07

KLE 9.95 74.05 10.36 72.97

TED : MT English-French (MTEnFr)

System case sensitive case insensitive
BLEU TER BLEU TER

EU-BRIDGE 36.99 45.20 37.85 44.32
KIT 36.22 45.18 36.97 44.37

UEDIN 35.91 45.78 36.64 45.04

RWTH 35.72 44.54 36.46 43.77

MITLL-AFRL 35.48 45.69 36.90 44.49

FBK 34.24 46.75 34.85 46.04

BASELINE 30.55 49.66 31.13 49.00

MIRACL 25.86 54.16 26.97 53.02

SFAX 16.09 62.89 17.33 61.48
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TED : MT English-German (MTEnDe)

System case sensitive case insensitive
BLEU TER BLEU TER

EU-BRIDGE 23.25 57.27 24.06 56.15
KIT 22.66 57.70 23.35 56.66

UEDIN 22.61 58.95 23.14 57.92

NTT-NAIST 22.09 57.60 22.63 56.65

KLE 19.26 61.36 19.75 60.48

BASELINE 18.44 61.89 18.92 61.02

TED : MT German-English (SLTDeEn)

System case sensitive case insensitive
BLEU TER BLEU TER

EU-BRIDGE 25.77 54.61 26.36 53.76
RWTH 25.04 55.49 25.61 54.65

KIT 24.62 55.62 25.16 54.77

NTT-NAIST 23.77 56.43 24.52 55.49

UEDIN 23.32 57.50 24.06 56.55

FBK 20.52 63.37 21.77 60.66

KLE 19.31 63.88 20.60 61.38

BASELINE 17.50 65.56 18.61 63.08

TED : MT English-Arabic (MTEnAr)
System BLEU TER

UEDIN 13.24 69.16
KIT 13.05 71.62

BASELINE 11.12 72.88

TED : MT Arabic-English (MTArEn)

System case sensitive case insensitive
BLEU TER BLEU TER

MITLL-AFRL 27.52 54.54 28.41 53.44
UEDIN 25.46 57.07 26.22 56.02

BASELINE 19.88 63.30 20.48 62.31

TED : MT English-Spanish (MTEnEs)

System case sensitive case insensitive
BLEU TER BLEU TER

UEDIN 35.63 45.10 36.47 44.12
BASELINE 31.26 48.43 31.95 47.48

TED : MT Spanish-English (MTEsEn)

System case sensitive case insensitive
BLEU TER BLEU TER

UEDIN 37.29 43.73 38.07 42.85
BASELINE 33.31 46.07 33.80 45.38

TED : MT English-Farsi (MTEnFa)
System BLEU TER

BASELINE 6.48 81.14

TED : MT Farsi-English (MTFaEn)

System case sensitive case insensitive
BLEU TER BLEU TER

MITLL-AFRL 18.37 66.02 19.03 65.03
UEDIN 16.94 72.66 17.52 71.66

BASELINE 16.22 72.13 16.72 71.05

TED : MT English-Hebrew (MTEnHe)

System case sensitive case insensitive
BLEU TER BLEU TER

BASELINE 15.69 65.62 15.69 65.62

TED : MT Hebrew-English (MTHeEn)

System case sensitive case insensitive
BLEU TER BLEU TER

UEDIN 26.58 56.99 27.14 56.25
BASELINE 23.66 58.66 24.20 57.83

TED : MT English-Polish (MTEnPl)

System case sensitive case insensitive
BLEU TER BLEU TER

PJIIT 16.10 74.82 16.60 73.64
BASELINE 9.75 82.60 10.16 81.44

LIA 7.79 86.89 10.12 82.31

TED : MT Polish-English (MTPlEn)

System case sensitive case insensitive
BLEU TER BLEU TER

PJIIT 18.33 65.60 18.96 64.59
BASELINE 13.94 68.75 14.49 67.63

TED : MT English-Portuguese (MTEnPt)

System case sensitive case insensitive
BLEU TER BLEU TER

UEDIN 32.41 45.85 33.12 44.87
BASELINE 31.32 47.06 31.97 46.19

TED : MT Portuguese-English (MTPtEn)

System case sensitive case insensitive
BLEU TER BLEU TER

BASELINE 35.78 43.13 36.16 42.61
UEDIN 34.66 46.11 35.28 45.52
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TED : MT English-Russian(MTEnRu)

System case sensitive case insensitive
BLEU TER BLEU TER

BASELINE 11.21 73.15 11.21 72.24

TED : MT Russian-English (MTRuEn)

System case sensitive case insensitive
BLEU TER BLEU TER

MITLL-AFRL 19.30 63.95 20.22 62.64
BASELINE 15.48 69.93 15.95 68.91

TED : MT English-Slovenian(MTEnSl)

System case sensitive case insensitive
BLEU TER BLEU TER

LIA 10.36 71.81 12.69 67.80
BASELINE 8.53 73.75 8.87 72.76

TED : MT Slovenian-English (MTSlEn)

System case sensitive case insensitive
BLEU TER BLEU TER

BASELINE 13.69 70.79 14.07 69.83

TED : MT English-Turkish(MTEnTr)

System case sensitive case insensitive
BLEU TER BLEU TER

BASELINE 6.97 79.93 7.36 78.65
UMONTREAL 4.76 80.67 5.51 79.28

TED : MT Turkish-English (MTTrEn)

System case sensitive case insensitive
BLEU TER BLEU TER

BASELINE 12.52 76.96 13.10 75.77

TED : MT English-Chinese(MTEnZh)

System character-based
BLEU TER

USTC 21.64 65.71

KIT 18.31 66.43

HKUST 16.41 74.35

BASELINE 15.56 80.48

UMONTREAL 7.40 81.89

TED : MT Chinese-English (MTZhEn)

System case sensitive case insensitive
BLEU TER BLEU TER

USTC 15.65 69.65 16.35 68.62
NICT 14.05 71.68 14.88 70.42

MITLL-AFRL 12.83 74.74 13.51 73.58

BASELINE 11.22 72.43 11.79 71.37

HKUST 9.64 76.67 10.83 74.16
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A.2. Progress Test Set (tst2013)
· All the sentence IDs in the IWSLT 2013 test set were used to calculate the automatic scores for each run submission.
· ASR and MT systems are ordered according to the WER and BLEU metrics, respectively.
· For each task, the best score of each metric is marked with boldface.
· All automatic evaluation metric scores are given as percent figures (%).

TED: ASR English tst2013

System IWSLT 2013 IWSLT 2014
WER (# Errors) WER (# Errors)

NICT 13.5 (5,734) 10.6 (4,518)
MITLL-AFRL 15.9 (6,788) 13.7 (5,856)
KIT 14.4 (6,115) 14.2 (6,044)
FBK 23.2 (9,899) 14.7 (6,247)
LIUM — 16.0 (6,818)
UEDIN 22.1 (9,413) 16.3 (6,963)
IOIT 27.2 (11,578) 24.0 (10,206)

TED: ASR German tst2013

System IWSLT 2013 IWSLT 2014
WER (# Errors) WER (# Errors)

KIT 25.7 (4,932) 25.4 (5,885)
UEDIN 37.8 (7,250) 35.0 (6,720)
FBK 37.5 (7,199) 37.8 (7,261)

TED : MT English-French test 2013(MTEnFr)

System case sensitive case insensitive
BLEU TER BLEU TER

EU-BRIDGE 40.50 43.27 41.65 42.06

KIT 40.12 43.09 41.11 42.04

RWTH 39.72 42.58 40.73 41.52
UEDIN 39.59 43.80 40.45 42.78

MITLL-AFRL 39.08 44.05 40.59 42.73

FBK 38.20 44.83 38.99 43.88

BASELINE 33.20 48.91 33.81 48.07

MIRACL 29.63 51.96 30.91 50.65

TED : MT English-German test 2013 (MTEnDe)

System case sensitive case insensitive
BLEU TER BLEU TER

EU-BRIDGE 26.22 53.62 27.30 52.34
KIT 26.03 53.83 26.77 52.81

NTT-NAIST 25.80 53.86 26.55 52.75

UEDIN 25.33 55.12 26.13 53.93

KLE 21.69 58.27 22.25 57.32

BASELINE 20.96 58.48 21.52 57.58

TED : MT German-English test 2013 (MTDeEn)

System case sensitive case insensitive
BLEU TER BLEU TER

EU-BRIDGE 28.77 50.52 29.29 49.63
KIT 27.98 50.92 28.55 50.04

NTT-NAIST 27.81 51.62 28.32 50.82

UEDIN 27.60 52.43 28.26 51.44

RWTH 27.59 51.33 28.08 50.41

FBK 25.45 55.80 26.07 54.88

KLE 23.59 57.38 24.18 56.47

BASELINE 20.26 60.33 20.89 59.48

TED : MT English-Arabic test 2013(MTEnAr)
System BLEU TER

UEDIN 14.20 65.97
KIT 14.15 68.29

BASELINE 12.68 68.94

TED : MT Arabic-English test 2013 (MTArEn)

System case sensitive case insensitive
BLEU TER BLEU TER

MITLL-AFRL 31.48 49.88 32.41 48.76
UEDIN 29.06 53.02 29.74 52.03

BASELINE 21.63 60.32 22.46 59.12

TED : MT English-Spanish test 2013 (MTEnEs)

System case sensitive case insensitive
BLEU TER BLEU TER

UEDIN 34.74 45.75 35.42 44.78
BASELINE 30.63 49.39 31.14 48.57

TED : MT Spanish-English test 2013(MTEsEn)

System case sensitive case insensitive
BLEU TER BLEU TER

UEDIN 39.13 41.37 39.75 40.60
BASELINE 34.18 44.63 34.70 44.00
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TED : MT English-Farsi test 2013 (MTEnFa)
System BLEU TER

BASELINE 7.05 78.90

TED : MT Farsi-English test 2013 (MTFaEn)

System case sensitive case insensitive
BLEU TER BLEU TER

MITLL-AFRL 19.47 63.27 20.11 62.27
UEDIN 16.51 82.50 16.87 81.58

BASELINE 14.04 83.01 14.44 82.09

TED : MT English-Hebrew test 2013(MTEnHe)

System case sensitive case insensitive
BLEU TER BLEU TER

BASELINE 15.92 64.16 15.92 64.16

TED : MT Hebrew-English test2013 (MTHeEn)

System case sensitive case insensitive
BLEU TER BLEU TER

UEDIN 29.70 52.40 30.51 51.35
BASELINE 25.97 55.40 26.74 54.23

TED : MT English-Polish test2013 (MTEnPl)

System case sensitive case insensitive
BLEU TER BLEU TER

PJIIT 25.92 61.04 26.62 59.94
BASELINE 11.12 75.95 11.67 74.78

TED : MT Polish-English test2013 (MTPlEn)

System case sensitive case insensitive
BLEU TER BLEU TER

PJIIT 27.99 58.01 28.61 57.10
BASELINE 17.25 66.44 17.75 65.44

TED : MT English-Portuguese test 2013(MTEnPt)

System case sensitive case insensitive
BLEU TER BLEU TER

BASELINE 31.38 46.42 31.89 45.66

UEDIN 33.20 44.90 33.93 43.90

TED : MT Portuguese-English test 2013 (MTPtEn)

System case sensitive case insensitive
BLEU TER BLEU TER

BASELINE 37.85 40.87 38.26 40.35

UEDIN 37.34 42.91 37.80 42.30

TED : MT English-Russian test 2013(MTEnRu)

System case sensitive case insensitive
BLEU TER BLEU TER

BASELINE 14.01 70.47 14.01 69.44

TED : MT Russian-English test 2012 (MTRuEn)

System case sensitive case insensitive
BLEU TER BLEU TER

MITLL-AFRL 24.30 57.59 25.39 56.25
BASELINE 19.82 63.56 20.40 62.46

TED : MT English-Slovenian test 2013 (MTEnSl)

System case sensitive case insensitive
BLEU TER BLEU TER

BASELINE 9.63 73.32 9.97 72.34

TED : MT Slovenian-English test2013 (MTSlEn)

System case sensitive case insensitive
BLEU TER BLEU TER

BASELINE 14.64 68.68 15.19 67.63

TED : MT English-Turkish test 2013 (MTEnTr)

System case sensitive case insensitive
BLEU TER BLEU TER

BASELINE 6.85 80.40 7.21 79.08
UMONTREAL 4.06 83.97 4.77 82.50

TED : MT Turkish-English test 2013 (MTTrEn)

System case sensitive case insensitive
BLEU TER BLEU TER

BASELINE 13.30 75.17 13.95 74.00

TED : MT English-Chinese test2013 (MTEnZh)

System character-based
BLEU TER

USTC 22.49 63.74
KIT 21.01 63.12

HKUST 18.81 70.94

BASELINE 18.23 76.15

UMONTREAL 7.93 80.47

TED : MT Chinese-English test 2013(MTZhEn)

System case sensitive case insensitive
BLEU TER BLEU TER

USTC 18.12 66.28 18.85 65.23
NICT 16.57 67.96 17.36 66.76
MITLL-AFRL 15.59 70.89 16.32 69.68
BASELINE 13.40 68.85 14.00 67.90
HKUST 11.89 72.33 13.08 70.10
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Appendix B. Human Evaluation

Interface used for the bilingual post-editing task

Post-editing instructions given to professional translators

In this task you are presented with automatic translations of TED Talks captions.

You are asked to post-edit the given automatic translation by applying the minimal edits required to transform the system output
into a fluent sentence with the same meaning as the source sentence.

While post-editing, remember that the post-edited sentence is to be intended as a transcription of spoken language. Note also
that the focus is the correctness of the single sentence within the given context, NOT the consistency of a group of sentences.
Hence, surrounding segments should be used to understand the context but NOT to enforce consistency on the use of terms. In
particular, different but correct translations of terms across segments should not be corrected.

Examples:

Source: This next one takes a little explanation before I share it with you.
Automatic translation: ...avant que je partage avec vous.
Post-editing 1: ...avant de le partager avec vous.
Post-editing 2: ...avant que je le partage avec vous. (preferred - minimal editing and acceptable in spoken language)

Source: And the table form is important.
Automatic translation: Et la forme de la table est importante.
Post-editing 1: La forme de la table est également importante.
Post-editing 2: Et la forme de la table est importante. (preferred - no editing - slightly less fluent but better fitting the source
speech transcription)

Source: Everyone who knew me before 9/11 believes...
Automatic translation: ...avant le 11/9...
Post-editing 1: ...avant le 11 septembre...
Post-editing 2: ...avant le 11/9... (preferred - no editing - better fitting the source)
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Abstract

This paper reports on the participation of FBK in the IWSLT
2014 evaluation campaign for Automatic Speech Recogni-
tion (ASR), which focused on the transcription of TED talks.
The outputs of primary and contrastive systems were submit-
ted for three languages, namely English, German and Italian.

Most effort went into the development of the English
transcription system. The primary system is based on the
ROVER combination of the output of 5 transcription sub-
systems which are all based on the Deep Neural Network -
Hidden Markov Model (DNN-HMM) hybrid. Before com-
bination, word lattices generated by each sub-system are
rescored using an efficient interpolation of 4-gram and Re-
current Neural Network (RNN) language models. The pri-
mary system achieves a Word Error Rate (WER) of 14.7%
and 11.4% on the 2013 and 2014 official IWSLT English
test sets, respectively. The subspace Gaussian mixture model
(SGMM) system developed for German achieves 39.5%
WER on the 2014 IWSLT German test sets. For Italian, the
primary transcription system was based on hidden Markov
models and achieves 23.8% WER on the 2014 IWSLT Ital-
ian test set.

1. Introduction
This paper describes the English, German, Italian FBK
large vocabulary continuous speech recognition systems
developed for the IWSLT 2014 evaluation campaign
(http://workshop2014.iwslt.org). As the IWSLT 2013 eval-
uation campaign [1], the ASR track of the IWSLT 2014 eval-
uation campaign focused on the transcription of TED talks
(http://www.ted.com). The main challenges for automatic
transcriptions of TED talks include: variability in acoustic
conditions, large variability of topics (hence a large, uncon-
strained vocabulary), presence of non-native speakers and a
rather informal speaking style.

Most effort went into the development of the English
transcription system. The primary system for English is
based on the ROVER combination [2] of the output of 5 tran-
scription sub-systems. Most of the progress demonstrated
for English, w.r.t. the FBK participation into the IWSLT

This work was done while Bagher BabaAli was at FBK as a Visiting
Researcher.

2013 campaign [3], is due to the switching from the Hidden
Markov Model - Gaussian Mixture Model (HMM-GMM)
approach to DNN-HMM hybrid systems, the use of an im-
proved n-gram language model, and an N-best list rescoring
strategy based on an interpolation of n-gram and RNN Lan-
guage Models (LMs). In addition, we took advantage by us-
ing the Kaldi open source toolkit for system development [4].

In this paper, more details are reported for the experi-
ments conducted for English than for German and Italian.

The rest of this paper is organized as follow. Section 2
describes the speaker diarization module, while Section 3
describes the ASR systems developed for English and Sec-
tion 4 describes the ASR systems developed for German and
Italian. Section 5 presents the automatic transcription results
achieved on the TED talk data for all languages. Finally,
some conclusions are reported in Section 6.

2. Speaker diarization
The input audio signal is first processed by a speaker di-
arization module which performs: start-end point detection,
speech segment classification and segment clustering based
on Bayesian information criterion [5]. At the end of this pro-
cess, each audio file has assigned a set of temporal segments,
each having associated a label that indicates the cluster to
which it belongs (e.g. female 1, male 1, etc). This process-
ing is common to all transcription systems presented in this
paper and was not changed since the IWSLT 2013 evalua-
tion [3].

3. English Transcription System
3.1. Acoustic data selection

Acoustic Model (AM) training was performed using in-
domain data. To this end, TED talk videos released before
the cut-off date, 31 December 2010, were downloaded with
the corresponding subtitles which are not a verbatim tran-
scription of the speech. Subtitles are, in fact, content-only
transcriptions in which anything irrelevant to the content
is ignored, including most non-verbal sounds, false starts,
repetitions, incomplete or revised sentences and superfluous
speech by the speaker. A simple but robust automatic pro-
cedure was implemented to select only audio data with an
accurate transcription. The approach adopted is that of se-
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lecting only those portions in which the human transcription
and an automatic transcription agree [6]. For details on the
speech data selection procedure adopted the reader can refer
to [3].

The collected data consisted in 820 TED talks, for a total
duration of ∼216 hours, with ∼166 hours of actual speech.
The speech data selection procedure resulted in ∼144 hours
of transcribed speech effectively used for AM training. This
year, for acoustic model training we used only this in-domain
data, while the previous year, in-domain data was augmented
with HUB4 training data [3].

3.2. LM training

Text data used for training the LMs are those released for
the IWSLT2013-SLT Evaluation Campaign. Before training,
texts were cleaned, normalized (punctuation was removed,
numbers and dates were expanded) and double lines were
removed. Training documents come from the following three
sources:

• giga5 GIGAWORD 5-th edition. Contains documents
stemming from seven distinct international sources of
English newswire. It is released from the Linguistic
Data Consortium (see http://www.ldc.upenn.edu). In
total it contains about 4G words.

• wmt13 Formed by documents in WMT12 news
crawl, news commentary v7 and Europarl v7 (see
IWSLT2013 official web site for some more details
about these corpora). In total it contains about 1G
words.

• ted13 An in-domain set of texts extracted from TED
talks transcriptions. It contains about 2.7M words.

Three 4-gram LMs, namely giga5, wmt13 and ted13 were
independently trained on the three sources using the modi-
fied shift-beta smoothing method as supplied by the IRSTLM
toolkit [7]. Then, two additional ”mixture” LMs were
trained using the ”mix” adaptation method implemented in
the IRSTLM toolkit [7]. The two-mix LM is built mixing the
smoothed (with the modified shift-beta approach) n-grams
of both wmt13 and ted13 collections, the all-mix LM is
obtained mixing the smoothed (with improved Kneser-Ney
method [8]) n-grams of all of the three collections aforemen-
tioned: giga5, wmt13 and ted13. We point out that in the
case of all-mix LM training no pruning of singleton 4-grams
was applied.

A further 4-gram LM, namely sel172M, was trained on
172M words automatically selected from giga5 collection in
order to match the in-domain set of documents ted13. Also
in this case the IRSTLM toolkit was employed, together with
the modified shift beta method for smoothing probabilities of
the n-grams not seen in the training set. The method used for
automatically selecting documents from the giga5 collection
is based on ”term frequency inverse documents frequency”

(TFIDF) coefficients and uses the ted13 collection as seed
corpus. Details can be found in [9].

Finally, two different RNN LMs (namely RNNLM1 and
RNNLM2) were trained, using the toolkit described in [10],
on the ted13 collection and on a text corpus including both
the ted13 collection and a subset of documents (contain-
ing around 10M words) automatically extracted from the
giga5 collection, respectively. Hence, the RNNLM2 LM
was trained over around 12.7 M words, mapping the single-
tons into the ”<unk>” symbol. The RNNLM1 LM has 450
hidden neurons in its hidden layer and the RNNLM2 LM has
500 hidden neurons.

Note that, the wmt13 LM is the LM used by ASR sys-
tems developed for the IWSLT 2013 evaluation, while the
two-mix LM is used by all ASR systems developed for
the IWSLT 2014 evaluation. Perplexity (PP) and out-of-
vocabulary (OOV) rates measured on the reference transcrip-
tions of the IWSLT English 2010 development data set (con-
taining 44505 words) are reported in Table 1. We can see
that the two-mix LM exhibits a significant lower perplexity
that the wmt13 LM. Column “Interp.” in the table reports PP
and OOV rate obtained by linearly interpolating the all-mix,
ted13, sel172M, RNNLM1 and RNNLM2 LMs: interpola-
tion weights are estimated in order to minimize the overall
perplexity on the transcriptions of the English 2010 devel-
opment set. Interpolation of these LMs is applied at recog-
nition time for N-best list rescoring, as it will be detailed in
Section 3.4.2.

LM giga5 wmt13 ted13 two-mix Interp.
PP 495 461 223 378 289
%OOV 0.4 1.7 7.5 1.6 0.3

Table 1: Perplexities and % OOV rates measured with several
LMs on transcriptions of IWSLT English 2010 development
data set.

3.3. Lexicon

Word pronunciations in the English lexicon are based on a
set of 45 phones. They were generated by merging different
source lexica for American English (LIMSI ’93, CMU dic-
tionary, Pronlex). In addition, phonetic transcriptions for a
number of missing words were generated by using the pho-
netic transcription module of the Festival speech synthesis
system. The lexicon did not change with respect to the pre-
vious year.

3.4. ASR system development using Kaldi

In the open source software Kaldi [4], there are two separate
setups for neural network training implementation, namely
Dan’s and Karel’s setups or recipes [11, 12]. In both of these
setups, the last (output) layer is a softmax layer whose output
dimension equals the number of context-dependent states of
a pre-trained HMM-GMM system. The neural net is trained
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to predict the posterior probability of each context-dependent
HMM state [13, 14]. During decoding the posterior proba-
bilities are divided by the prior probability of each state to
form a pseudo-likelihood that is used in place of the state
emission probabilities in the HMM. Depending on which of
the two setups is used the performance is different because of
many differences in the recipes. For example, Karel’s setup
uses pre-training but Dan’s setup does random initialization;
Karel’s setup uses early stopping using a validation set but
Dan’s setup uses a fixed number of epochs and averages the
parameters over the last few epochs of training. Many other
aspects of the training procedure are also different (nonlin-
earity types, learning rate schedules, etc.). Two speaker-
adaptive DNN-HMM systems were developed by using the
Dan’s and Karel’s setups.

3.4.1. Acoustic modeling

For acoustic modeling 13 mel-frequency cepstral coefficients
(MFCCs), including the zero order coefficient, are extracted
from the signal every 10ms by using a Hamming window
of 25ms length. These features are then mean/variance nor-
malized on a speaker-by-speaker basis, spliced by +/- 3
frames next to the central frame and projected down to 40
dimensions using linear discriminant analysis (LDA) and
Maximum Likelihood Linear Transform (MLLT). A sin-
gle feature-space Maximum Likelihood Linear Regression
(fMLLR) transform for each training speaker is then esti-
mated and applied to train speaker-adaptively trained (SAT)
triphone HMMs. These SAT triphone HMM have 6,349
tied-states and 130,000 Gaussians. The speaker-adaptive
DNN-HMM hybrid systems are built on top of LDA-MLLT-
fMLLR features and SAT triphone HMMs.

A first DNN is trained using the Karel’s setup. An eleven
frames context window of LDA-MLLT-fMLLR features (5
frames at each side) is used as input to form 440 dimensional
feature vector. The DNN have 6 hidden layers each with
2048 neurons, the resulting architecture can be summarized
as follows: 440x2048x2048x2048x2048x2048x2048x6349.
The DNN is trained in several stages including Re-
stricted Boltzmann Machines (RBM) pre-training, mini-
batch Stochastic Gradient Descent training, and sequence-
discriminative training such as Minimum Phone Error (MPE)
and state-level Minimum Bayes Risk (sMBR).

A second DNN is trained based on the Dan’s setup. A
nine frames context window of LDA-MLLT-fMLLR features
(4 frames at each side) is used as input to form 360 dimen-
sional feature vectors. The DNN is a p-norm DNN with
5 hidden layers and p-norm (input, output) dimensions of
(4000, 400) respectively, i.e. the nonlinearity reduces the di-
mension tenfold [12]. 12000 sub-classes are used, and the
number of parameters is 11.0 million. The Dan’s setup does
not support RBM pretraining. Instead it performs something
similar to the greedy layer-wise supervised training [15] or
the layer-wise backpropagation of [14]. The network is ini-
tialized randomly with one hidden layer, trained for a short

time (typically less than an epoch, meaning less than one full-
pass through the data), then the layer of weights that go to the
softmax layer is removed, a new hidden layer and two sets of
randomly initialized weights are added, and trained again.
This is repeated until we have four layers. The initial and
final learning rates in our training setup are 0.08 and 0.0008
respectively, and during training is decreased exponentially,
except for a five epochs at the end during which it is kept
fixed. Dan’s setup was originally written to support parallel
training on multiple CPUs or GPUs. During training, a data-
parallel method based on a periodic averaging the parameters
of separate Stochastic Gradient Descent runs.

3.4.2. Decoding process

At recognition stage, LDA-MLLT-fMLLR features are first
generated by using auxiliary HMMs. To this end, a decoding
pass with speaker-independent GMM-HMM is conducted to
produce a word lattice for each utterance. A single fMLLR
transform for each speaker is then estimated from sufficient
statistics collected from word lattices with respect to SAT tri-
phone HMMs. These transforms are hence used in the sec-
ond decoding pass with SAT HMM to produce new word lat-
tices. A second set of fMLLR transforms is estimated from
new word lattices and combined with the first set of trans-
forms. Then a decoding pass is conducted on the obtained
fMLLR adapted acoustic features with the DNN-HMM hy-
brid system, where the DNN is trained to provide posterior
probability estimates for the SAT triphone HMM tied-states.

All decoding passes make use of a decoding graph built
using a ”pruned” version of the two-mix LM introduced
above. The word lattice generated for each utterance by the
DNN-HMM hybrid system is rescored with the ”non pruned”
two-mix LM in order to produce the final ASR hypothesis.
Alternatively, as mentioned in Section 3.2, N-best (N=100)
list is generated and rescored. In this case, rescoring con-
sists in recomputing, for each hypothesis in the list, the corre-
sponding LM probability as a linear interpolation of the prob-
abilities given by the all-mix, ted13, sel172M, RNNLM1
and RNNLM2 LMs. Its worthwhile to mention that the in-
terpolation weights are estimated in order to minimize the
perplexity over all the 1-best hypotheses.

3.5. Development of complementary ASR systems

In view of system combination with ROVER, we explored
the way to develop complementary systems. To this end,
acoustic models of the HMM-GMM system for the IWSLT
2013 ASR English evaluation [3] were used to provide tied-
state alignment to train two additional DNN-HMM hybrid
systems which are described below.

3.5.1. Two-pass HMM-GMM system

The two decoding pass HMM-GMM system developed for
the IWSLT 2013 evaluation uses the wmt13 LM [3]. A first
complementary systems developed for the IWSLT 2014 eval-
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uation is obtained using the two-mix LM instead.

3.5.2. DNN-HMM systems

The first DNN-HMM system was trained on the tied-state
alignment obtained with the SAT triphone HMMs used in the
first decoding pass by the 2013 HMM-GMM system. The
DNN was however trained on unnormalized acoustic fea-
tures. The second DNN-GMM system was trained on the
tied-state alignment obtained with the SAT triphone HMMs
used in the second decoding pass by the 2013 HMM-GMM
system and on SAT features. At recognition stage, a two pass
DNN-HMM decoding system is obtained when word tran-
scriptions generated by the DNN-HMM system using unnor-
malized acoustic features are used to supervise the extraction
of the SAT acoustic features for a second decoding pass with
the SAT DNN-HMM system.

First-pass DNN-HMM
The first DNN is trained on 13 MFCC, including the zero
coefficient, without speaker normalization. A 31-frame con-
text window is applied, the 403-dimensional features vec-
tor is then decorrelated with discrete cosine transform (DCT)
and projected on a 208-dimensional feature vector. Average
and covariance normalisations are applied to this later feature
vector and the resulting, normalized, vector is used as input
to the DNN. The DNN is composed of 5 hidden layers with
1500 elements per layer. The DNN is trained with cross-
entropy on 10021 triphone tied-states targets obtained from
time alignment with the first pass models of the 2013 HMM-
GMM system. The resulting architecture can be summarized
as follows: 208x1500x1500x1500x1500x1500x10021.

The TNet software package [16] is used for training. The
training set for the DNN is composed only of TED data as ex-
plained above. The training set is split into two sets with non-
overlapping speaker: training (90%) and cross-validation
(10%). The DNN weights are initialized randomly and pre-
trained with RBM [17, 18]. The first layer is pre-trained with
a Gaussian-Bernoulli RBM trained during 10 iterations with
a learning rate of 0.005. The following layers are pre-trained
with a Bernoulli-Bernoulli RBM trained during 5 iterations
with a learning rate of 0.05. Mini-batch size is 500. For the
back propagation training the learning rate is kept to 0.08 as
long as the frame accuracy on the cross-validation set pro-
gresses by, at least, 0.5% between successive epochs. The
learning rate is then halved at each epoch until the frame ac-
curacy on the cross-validation set fails to improve by at least
0.1%. The mini-batch size is 1024. In both pre-training and
training, a first-order momentum of 0.9 is applied.

Second-pass SAT DNN-HMM
The second DNN is trained on the 39 SAT features as gener-
ated for the second pass triphone HMM of the 2013 HMM-
GMM system. A 31-frame context window is applied. The
resulting 1209-dimensional features vector is decorrelated
with DCT and projected on a 468-dimensional feature vec-
tor. Average and covariance normalization is applied and the

resulting, normalized, vector is used as input to the DNN.
The DNN is composed of 5 hidden layers with 1500 ele-
ments per layer. It is trained with cross-entropy on 10021
triphone tied-states targets obtained from time alignment
with the second pass models of the HMM-GMM baseline.
The resulting architecture can be summarized as follows:
468x1500x1500x1500x1500x1500x10021. The training was
conducted following the same set up as for the first-pass
DNN above.

4. German and Italian transcription systems
For this evaluation, we decided to focus our efforts mostly
on English and to dedicate a limited attention to German and
Italian. For both languages we wanted to compare our in-
house proprietary system with the Kaldi recognizer, but due
to the aforementioned limitations, at the end we did the fol-
lowing submissions:

• Italian primary in-house SAT HMM-GMM system
(see [3] for details);

• Italian contrastive1 SAT Subspace Gaussian Mixture
Model (SGMM) system developed with Kaldi [4];

• German primary SAT SGMM system developed
with Kaldi.

4.1. Acoustic data

Concerning Italian, we could use the following corpora:

• Euronews Italian Data provided by the organizers,
amounting to about 76h:38m of reliable speech. The
corresponding transcription was obtained after a fur-
ther step of light supervision training, using the do-
main dependent AMs trained on the originally pro-
vided data.

• Italian Internal data: about 216h:31m of reliably
transcribed (partly manually, partly with light supervi-
sion techniques) speech collected in the previous years
and belonging to 3 domains: Apasci, a phonetically
balanced corpus; Italian Parliament recordings, TV
news recorded from RAI. All this data were recorded
before June 30th, 2011.

This data amounted to slightly more than 293 hours, but
in order to speed up Kaldi experiments we decided to sample
the data, by keeping only the first 100 sentences for each au-
dio file. This resulted in about 154h:19m of speech (74h:30m
Euronews data + 79h:49m Internal data).

Instead, the in-house proprietary system was trained on
the Italian Internal data only (216h:31m).

Concerning German, we could use the following corpora:

• Euronews German data provided by the organizers,
amounting to about 72h:18m of reliable speech. The
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corresponding transcription was obtained after a fur-
ther step of light supervision training, using the do-
main dependent AMs trained on the originally pro-
vided data.

• German WEB data: about 158h:47m of speech data
transcribed using light supervision techniques, col-
lected before July 2012.

The effective material used for training consisted in about
206h:54m of speech (66h:45m Euronews data + 140h:09m
German WEB data).

4.2. Textual data

To build the German LM we used text data from various
sources, including Europarl data, news from 2005 to June
30th, 2012, and of course the ASR LM Training Data Ger-
man provided by IWSLT organizers. The total amount of
words was about 1,130 million words. These data were pro-
cessed in order to perform a normalization including in par-
ticular number and compound words splitting, which was
performed in a fully automatic way described in [3]. After
normalization, a 4-grams language model was built, result-
ing in about 481.3 millions of 4-grams. A pruned version of
this LM, including about 9,7 millions of 4-grams, was used
to build the FST used to build the lattices during decoding,
while the full LM was used to rescore the lattices. The lexi-
con was fixed to the most frequent 200K words; the phonetic
transcription was generated by our in-house system.

To build the Italian LM we used text data coming from
news collected from 2005 to June 30th, 2011, in addition
to the ASR LM Training Data Italian provided by IWSLT
organizers. The total amount of words was about 985 mil-
lion words. After text normalization and number splitting, a
4-grams language model was built, resulting in about 427,6
millions of 4-grams. For the contrastive system using Kaldi,
a pruned version of this LM, including about 6,5 millions of
4-grams, was used to build the FST used to build the lattices
during decoding, while the full LM was used to rescore the
lattices. For the primary in-house system a static FSN was
built using a pruned version of the LM, including was built
15,3 million 4grams. In both cases, the lexicon was fixed
to the most frequent 200K words; the phonetic transcription
was generated by our in-house system.

4.3. Decoding process

Both for German and Italian, we performed a two stage
recognition. For the two Kaldi SGMM systems (German pri-
mary and Italian contrastive1) the two stage recognition was
followed by a linguistic rescoring stage, obtained using the
full LM over the generated lattices.

For the in-house system (Italian primary), no final LM
rescoring was performed. Details about the AM adaptation
performed for the second step decoding are described in [3].

5. Recognition Experiments
5.1. Results on English TED talks

Recognition experiments were carried out on the IWSLT
2014 English ASR development and evaluation data sets
listed in Table 2. These data sets were released over sev-
eral IWSLT evaluation campaigns. Recognition experiments
on dev2012, tst2013 and tst2014 were always conducted in
fully automatic mode. Instead, recognition experiments on
all the other data sets (dev2010, tst2011 and tst2012) were
conducted exploiting the provided manual segmentation.

Data Set N. of Talks Duration
dev2010 19 4h:00m
tst2011 8 1h:07m
dev2012 10 1h:57m
tst2012 11 1h:45m
tst2013 28 4h:38m
tst2014 15 2h:24m

Table 2: Details of the IWSLT 2014 English ASR develop-
ment (dev) and evaluation (tst) data sets.

As a reference, Table 3 reports results achieved with
the 2013 HMM-GMM system [3]. Column “Pruned LM”
gives results obtained by the second decoding pass (see Sec-
tion 3.5.1) using a pruned version of the LM, that is the
wmt13 LM introduced in Section 3.2. Column “Rover” in
Table 3 reports results achieved with a combination, using
ROVER, of 4 recognition outputs resulting from rescoring
the word lattices generated by the second decoding pass by
using different unpruned LMs [3]. The 23.7% WER reported
on tst2013 data set is the result achieved by the FBK 2013
primary system in the IWSLT 2013 ASR evaluation cam-
paign.

Data Set System 2013
Pruned LM Rover

dev2010 17.5 16.1
tst2011 15.6 13.6
dev2012 19.3 -
tst2012 17.6 16.1
tst2013 25.2 23.7

Table 3: % WER achieved by the HMM-GMM 2013 system
on several English data sets. Results were obtained by: de-
coding with the pruned wmt13 LM and performing ROVER
combination of 4 different rescored outputs.

5.1.1. Experiments with Kaldi systems

Table 4 reports results with two SAT DNN-HMM systems
developed with the Kaldi toolkit. “Dan” and “Karel” indicate
the recipe, provided within the Kaldi toolkit, used to train the
DNN.
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Data Set Kaldi DNN implementation
“Dan” “Karel”

(Pruned LM/Rescoring) (Pruned LM/Rescoring)
dev2010 14.8/13.4 13.4/12.5
tst2011 12.8/11.5 11.5/10.7
dev2012 18.0/17.0 16.3/15.3
tst2012 12.7/11.7 11.7/10.8
tst2013 19.4/18.0 17.5/16.4

Table 4: Results, in % WER, achieved by two different DNN-
HMM systems on several English data sets. For each system
and data set, it is reported the result achieved by: decoding
with the pruned two-mix LM and performing rescoring of
word lattices with the corresponding unpruned LM.

From results reported in Table 4 we can conclude that the
“Karel” recipe allows to train a DNN which is consistently
more effective than the DNN trained with the “Dan” recipe.
In addition, performing rescoring of word lattices with the
unpruned LM provides tangible benefit, for example drop-
ping the WER, on the dev2010 data set, from 13.4% to 12.5%
when using the the “Karel” DNN-HMM system.

The comparison of results reported in Tables 3 and 4, al-
lows to appreciate the net improvements of the 2014 DNN-
HMM systems over the 2013 HMM-GMM system. We be-
lieve that this major improvement can be attributed to the
adoption of the deep learning paradigm for acoustic model-
ing, a better LM and a more comprehensive training proce-
dure offered by the Kaldi development toolkit.

Data Set Kaldi DNN implementation
“Dan” “Karel”

(N-best rescoring) (N-best rescoring)
dev2010 12.9 11.9
tst2011 10.7 10.0
dev2012 15.5 14.2
tst2012 11.0 10.4
tst2013 16.5 15.2

Table 5: % WER achieved by two different DNN-HMM
systems on several English data sets by performing N-best
(N=100) list rescoring using an interpolation of 4-gram and
RNN LMs.

Table 5 reports results performing N-best list rescoring
using an interpolation of 4-gram and RNN LMs, as described
in section 3.4.2. By comparing these results with those in
Table 4, we can notice the effectiveness of the N-best list
rescoring method.

5.1.2. Experiments with complementary systems

Table 6 reports recognition results obtained with the 2014
HMM-GMM and DNN-HMM systems described in Sec-
tion 3.5 without performing word lattice rescoring. Rows

p1-GMM and p1-GMM+p2-GMM report results achieved
performing one and two passes of decoding with the 2013
HMM-GMM system (see Section 3.5.1). Performing a sin-
gle decoding pass 17.8% and 25.7% WER are achieved on
the dev2010 and tst2013 data sets, respectively. While per-
forming two decoding passes 16.3% and 23.4% WER are
achieved on the dev2010 and tst2013 data sets, respectively.
These latter results can be directly compared with the 17.5%
and 25.2% WER, achieved by the 2013 HMM-GMM sys-
tem as reported in the ”Pruned LM” column of Table 3.
The performance improvement can be attribute at the use
of a better LM (that is two-mix Vs. wmt13 LM). Results
achieved performing one and two decoding passes with the
DNN-HMM systems are reported in rows p1-DNN and p1-
DNN+p2-DNN, respectively. We can see that performing a
single decoding pass 16.5% and 21.9% WER are achieved
on the dev2010 and tst2013 data sets, respectively. While
performing two decoding passes 15.4% and 20.7% WER are
achieved on the dev2010 and tst2013 data sets, respectively.
These results confirm, once again, the effectiveness of the
DNN-HMM hybrid approach. However, they are not as good
as those obtained with DNN-HMM systems developed with
the Kaldi toolkit and reported in Table 4 (”Pruned LM” con-
dition).

Complementary System dev2010 tst2013
p1-GMM 17.8 25.7
p1-GMM+p2-GMM 16.3 23.4
p1-GMM+p2-DNN 15.6 20.1
p1-DNN 16.5 21.9
p1-DNN+p2-GMM 15.5 22.0
p1-DNN+p2-DNN 15.4 20.7

Table 6: Results, in % WER, with different complementary
system configurations on the dev2010 and tst2013 English
data sets.

Table 6 reports also results obtained alternating recog-
nition passes conducted with HMM-GMM and DNN-HMM
systems. For example, row p1-DNN+p2-GMM reports re-
sults obtained performing the first pass with the DNN-HMM
system and the second pass with the HMM-GMM system,
this results in 15.5% and 22.0% WER on the dev2010 and
tst2013 sets, respectively. In the following, we will refer to
this system as “AltSystem1”. One additional combination
we have tried was as follows. The AltSystem1 was used to
generate a word lattice which was acoustically rescored using
the p2-DNN systems: we will refer to this system as “AltSys-
tem2”. The AltSystem2 resulted in 15.2% and 20.3% WER
on the dev2010 and tst2013 data sets, respectively. The out-
put of systems AltSystem1 and AltSystem2 were considered
for system combination in the hope that they were different
one each other enough.
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Sub-systems dev2010 tst2013
DNN-HMM “Dan” 12.9 16.5
DNN-HMM “Karel”1 11.9 15.3
DNN-HMM “Karel”2 11.9 15.2
AltSystem1 15.5 22.0
AltSystem2 15.2 20.3

ROVER
11.7 14.7

Table 7: Results, in % WER, achieved by individual sub-
systems, and performing ROVER-based system combina-
tion, on the dev2010 and tst2013 English data sets.

5.1.3. System combination

The 2014 primary system for English is based on the prin-
ciple of system combination by means of ROVER. Table 7
reports recognition results achieved by the 2014 primary
system, which combines the outputs of 5 sub-systems pre-
viously introduced. Results achieved by individual sub-
systems are also reported. DNN-HMM “Karel”1 and DNN-
HMM “Karel”2 denotes two sub-systems that differ only
for the number of iterations in training of the corresponding
DNN.

For the tst2013 data set we can see that an improvement
of 0.5% WER is achieved with the ROVER combination
w.r.t. the best sub-system entering in the combination: from
15.2% to 14.7% WER. The obtained 14.7% WER can be di-
rectly compared with the 23.7% WER obtained by the 2013
primary system on the same data (see Table 3). This repre-
sents a substantial improvement in terms of performance.

On the 2014 IWSLT English test set the official evalua-
tion result achieved by the primary system is 11.4% WER,
with an improvement of 0.7% WER w.r.t. the performance
of the best sub-system entering in the ROVER combination,
that is 12.1% WER.

5.2. Results on German TED talks

The subspace Gaussian mixture model system developed for
German achieves 39.5% WER on the 2014 IWSLT German
test sets.

5.3. Results on Italian TED talks

For Italian, the primary transcription system was based on
hidden Markov models and achieves 23.8% WER on the
2014 IWSLT Italian test set. The contrastive1 transcription
system, based on SGMM, achieves 24.6% WER.

6. Conclusions
In this paper we have presented the systems we developed for
the participation in the IWSLT 2014 ASR evaluation cam-
paign: we developed systems for the English, German and
Italian ASR tracks.

For English, substantial progress, with respect to our pri-

mary system submission to IWSLT 2013 campaign [3], was
demonstrated. This progress is due to the switching from the
pure HMM-GMM approach to the adoption of DNN-HMM
hybrid systems, the adoption of a better n-gram language
model, and an N-best list rescoring strategy based on an inter-
polation of n-gram and RNN language models. In addition,
we took advantage by using the Kaldi open source toolkit for
system development.
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Abstract
This paper describes the University of Edinburgh (UEDIN)
ASR systems for the 2014 IWSLT Evaluation. Notable fea-
tures of the English system include deep neural network
acoustic models in both tandem and hybrid configuration
with the use of multi-level adaptive networks, LHUC adapta-
tion and Maxout units. The German system includes lightly
supervised training and a new method for dictionary gener-
ation. Our voice activity detection system now uses a semi-
Markov model to incorporate a prior on utterance lengths.
There are improvements of up to 30% relative WER on the
tst2013 English test set.

1. Introduction
This paper describes our system for automatic speech recog-
nition (ASR) of TED talks, used in the 2014 evaluation cam-
paign of the International Workshop on Spoken Language
Translation. We describe both our English and German sys-
tems, although the development of the two was carried out
separately.

This is the third year we have participated in the English
ASR task. Our 2012 system [1] used tandem-GMM acous-
tic models, using deep neural networks (DNNs) to derive
bottleneck features, incorporating out-of-domain data from
multiparty meetings using the multi-level adaptive networks
(MLAN) scheme [2]. In 2013 [3], we combined DNN sys-
tems in both tandem and hybrid configurations, again using
the MLAN scheme. We also made extensive improvements
to our language models, devoting substantial efforts to text
normalisation, and data selection using the cross-entropy dif-
ference score proposed by [4]. These improvements led to
a WER reduction from 12.4% to 10.2% on the tst2011
progress test set.

This year, our final system features a system combina-
tion of several complementary systems built using the HTK
and Kaldi toolkits. On the language modelling side, other
than using a larger 4-gram model for final rescoring, there
are very few changes from last year. This year’s system does

This work was supported by the European Union under the FP7
projects inEvent (grant agreement 287872) and EU-Bridge (grant agreement
287658), and by EPSRC Programme Grant grant EP/I031022/1, Natural
Speech Technology.

not employ recurrent neural network language models, as we
were unable to obtain gains with the size of models used.
On the acoustic modelling side, there are a number of new
features: improved speaker adaptation for the DNNs with
our recently proposed Learning Hidden Unit Contributions
(LHUC) scheme [5]; the use of Maxout [6] and rectified lin-
ear units for the DNNs [7]; sequence training of some neural
networks [8]; and the use of mixed-band training data. These
features of the system are described in more detail in Sec-
tion 3.

The German system is described separately in Section 4.
For German, our major challenge is the lack of reliably-
transcribed in-domain acoustic training data, and a good
quality dictionary, neither of which we have access to. Like
last year, we rely in bootstrapping a system from the German
portion of the GlobalPhone corpus, using a biased language
model method. We also use a new technique for dictionary
expansion [9].

In the 2013 evaluation, ASR systems were required for
the first time to operate without manually-supplied segmen-
tation of the test data into utterances. We therefore used an
automatic voice activity detection (VAD) based segmenter on
the tst2013 set as input to the ASR. We have since iden-
tified a number of problems with the baseline VAD system
used in 2013, including a mismatch to the acoustic condi-
tions, and a tendency to segment too tightly, leading to word
deletions at sentence boundaries: we describe our work to
address these problems in Section 2.

2. Voice activity detection
There were substantial changes to this year’s VAD sys-
tem, used for both English and German systems. After
comparing the ASR performance with VAD-based segmen-
tation on manually-segmented development data, we ob-
served a reduction in performance compared to when the
manual segmentations were used directly, even when local
speech/silence decisions were generally correct. We hy-
pothesised that this is because the utterances are often se-
mantically segmented by human annotators, making them
better-suited to language models trained on complete sen-
tences. Additionally, in our system we observed an unfor-
tunate trade-off between an over-sensitive segmenter which
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Figure 1: An example of a candidate break sequence
and associated state topology. The transitions highlighted
in red show an example optimal break sequence B∗ =
{b0, b2, b3, b4, b6}

results in lots of short utterances, and an under-sensitive one,
which can lead to excessively long segments or insertions
and deletions at utterances boundaries.

As a solution to both problems, in [10], we proposed a
novel technique based using a semi-Markov model with an
prior on the duration of an utterance designed to yield seg-
ments more closely matching the distribution found in train-
ing data. For the prior, we used a log-normal distribution
with parameters estimated on manually segmented training
data. We found that the log-normal distribution generally
provides a good fit to the distribution of utterance durations
in the training data.

As input to the the semi-Markov decoder, we use a highly
sensitive segmentation with small minimum duration con-
straint of 100ms. This produces many break points that
would normally be detrimental to ASR if used directly. We
decode this sequence of breaks using a semi-Markov de-
coder, to find the globally optimal sequence of breaks. The
method is illustrated in Figure 1. Further details may be
found in [10].

The initial segmentation is produced with an GMM-
HMM based model. Speech and non-speech are modelled
with diagonal covariance GMMs with 12 and 5 mixture com-
ponents respectively. Features are calculated every 10ms
from a 30ms analysis window and have a dimensionality of
14 (13 PLPs and energy). Models were trained on 70 hours
of scenario meetings data from the AMI corpus using the
provided manual segmentations as a reference.

3. English systems
3.1. Language modelling

Our language modelling setup is largely unchanged from last
year, but we summarise it here for completeness. We trained
standard Kneser-Ney smoothed n-gram language models on
a combination of TED talk transcriptions as in-domain data,
and out-of-domain data sources specified by the IWSLT
rules. Table 1 shows the text data available, to which we
applied substantial pre-processing and normalisation.

Following [4], we used all the available in-domain data,

Corpus Total Selected
TED 2.4M 2.4M
Europarl 53.1M 6.3M
News Commentary 4.4M 0.7M
News Crawl 693.5M 72.9M
Gigaword 2915.6M 232.9M
OOD total 3666.6M 312.8M

Table 1: Numbers of words in LM training sets.

Language model Perplexity
TED 3-gram 183.2
OOD (312MW / 751MW) 3-gram 133.5 / 138.3
TED+OOD (312MW / 751MW) 3-gram 125.1 / 124.9
TED 4-gram 179.9
OOD (312MW / 751MW) 4-gram 123.9 / 126.4
TED+OOD (312MW / 751MW) 4-gram 114.9 / 113.4

Table 2: Perplexities of N-gram language models on TED
development set.

and selected a subset of out-of-domain (OOD) data, Ds to
minimise the cross-entropy difference:

DS = {s|HI(s)−HO(s) < τ} (1)

where HI(s) is a cross-entropy of a sentence with a LM
trained on in-domain data, HO(s) is a cross-entropy of a sen-
tence with a LM trained on a random subset of the OOD data
of similar size to the TED corpus, and τ is a threshold to con-
trol the size of DS . Interpolation parameters were tuned on
the dev2010 and tst2010 sets.

Table 2 shows perplexities of the in-domain, OOD and
final interpolated LMs. In both Kaldi and HTK decoding
pipelines the smaller 3-gram model was used for the pri-
mary decoding passes; when Kaldi’s WFST-based decoder
was used, the 3-gram was pruned to reduce memory require-
ments. In both cases, lattices were finally rescored using an
unpruned 4-gram LM. Compared to 2013, when only mod-
els trained on 312MW set were used, this year we used the
substantially larger 4-gram model trained on 715M words for
the final pass. Due to the limitations of HDecode, we again
limited the vocabulary to below 64k words based on occur-
rence count. This limit was also applied in the Kaldi systems,
a restriction we plan to remove in future.

We also investigated the use of RNN models, which were
interpolated with the 4-gram model, and used to rescore the
3-gram lattices. However, we did not use these models in
the system, as we were unable to observe any performance
improvements over the large 4-gram model on its own. This
is probably due to the fact that the RNNs available at the
time of submission were trained on much smaller quantities
of text.
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Corpus Quantity (hrs)
TED talks 143
Switchboard 285
AMI meetings (a) 127
AMI meetings (b) 78

Table 3: Training data quantities

3.2. Acoustic modelling

3.2.1. Training data

For in domain training data, as in previous years, we used
813 TED talks recorded prior to the end of 2010, which
were aligned to the transcriptions available online using an
efficient lightly-supervised technique [11]. We also used
two sources of out-of-domain data: the Switchboard 1 cor-
pus of conversational telephone speech, and the AMI corpus
of multi-party meetings1. The quantities of speech data are
summarised in Table 3.

As can be seen from the table, we use the AMI meetings
corpus in two configurations. Previously, we have assumed
that the AMI corpus is not well-matched to the TED domain,
and used it purely as a means of generating bottleneck fea-
tures for the MLAN scheme described in Section 3.2.2. In
this case, we use a setup (a) described in [12]. Following last
year’s evaluation, however, we observed that with the passing
of time, the changing format and expanding scope of TED
talks has led to the pre-2010 data no longer being the best
match for future test sets. This year, therefore, we decided to
train one set of acoustic models on a combination of the TED
and AMI data. In this case, we used a more recently-defined
training setup (b) that aims to be reproducible by other sites
and forms the basis of a Kaldi recipe. This is described in
detail in [13].

3.2.2. Tandem MLAN systems

The multi-level adaptive networks (MLAN) scheme [14]
aims to make optimal use of mismatched OOD data in train-
ing a system for which limited data is available for the target
domain. Taking advantage of the fact that features derived
from neural networks are known to be portable across do-
mains, OOD DNNs with a bottleneck layer [15] are used
to generate features for the in-domain data. In the MLAN
scheme, a second-level network is trained on these features,
augmented with the original acoustic features, to ensure
robustness when the input bottleneck features are poorly-
matched to the new domain, and – since each DNN incor-
porates several frames of acoustic context – allowing wider
acoustic context to be incorporated without additional pa-
rameters.

The MLAN scheme has a particular advantage when used
with the Switchboard telephone data, as it allows us to make
good use of narrowband data without the need for upsam-

1http://corpus.amiproject.org/

OOD

inputs

OOD

targets

In-domain

inputs

In-domain

targets

MLAN
features

Figure 2: Tandem MLAN feature generation

pling, which may cause performance degradation. To do this,
the first level nets are trained on the 8khz Switchboard data.
To generate features for the TED data, we can simply down-
sample this data in to match the telephone data. The bot-
tleneck features are then augmented with standard acoustic
features derived without the need for any change in sample
rate.

In this year’s system, we used MLAN purely in a tandem
configuration [16], whereby the final bottleneck features are
augmented with the original acoustic features and used to
train a GMM. The complete feature generation process is il-
lustrated in Figure 2. The advantage of this configuration
is that it allows us to take advantage of the large quantity
of training data available for each test speaker in the TED
task by estimating multiple CMLLR adaptation transforms
per speaker with a regression class tree.

All tandem networks use 6 wide layers with 2048 hid-
den units per layer; the bottleneck layers have 30 units. The
nets are trained with the standard cross-entropy criterion us-
ing approximately 6,000 context-dependent triphone targets
derived from a baseline GMM. Input acoustic features are
PLPs with first and second derivatives – 39 features in total.
Both first- and second-level networks use 9 frames of acous-
tic context. The final GMMs have MPE training applied. All
tandem systems use HTK, as we were unable to achieve com-
parable performance with Kaldi on these features.

3.2.3. Hybrid LHUC systems

We have previously used DNNs in a hybrid configuration,
whereby the nets are used to generate posterior probabili-
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ties over tied-state triphones for direct use in the decoder.
We have noted that speaker adaptation, using a global fM-
LLR transform per speaker, is essential for competitive per-
formance on the TED task. This year, in addition, we ex-
perimented with the use of our recently-proposed technique
[5] for creating speaker-dependent DNNs by adapting each
hidden layer on a per-speaker basis, which we term Learning
Hidden Unit Contributions (LHUC). We briefly summarise it
here. Consider the l-th hidden layer of a DNN, given by

hl = φl
(
Wl⊤hl−l

)
. (2)

where Wl⊤ are the weights and φl is the nonlinear trans-
fer function at the l-th hidden layer. We modify a stan-
dard speaker independent (SI) DNN by defining a set of
speaker-dependent (SD) parameters for speaker m, θm =

{r1m, . . . , rLm}, where rlm ∈ RM l

is the vector of SD pa-
rameters for the lth hidden layer. If a(rlm) is element-wise
function that constrains the range of rlm, then we can modify
(2) to define a hidden layer output that is specific to speaker
m:

hl
m = a(rlm) ◦ φl

(
Wl⊤hl−l

m

)
, (3)

where ◦ is an element-wise multiplication. The SD term can
be viewed as applying different weights to the contributions
from each the hidden units on a per-speaker basis. We define
a(·) as a sigmoid with amplitude 2, a(c) = 2/(1+exp(−c)),
so that each speaker-dependent weighting is strictly positive
and centered at one. This re-parametrisation is for optimisa-
tion purposes only; at runtime a(·) can be evaluated once for
a given set of θm and directly used as a scaling factor. The
SD parameters are optimised with respect to the negative log
posterior probability F(θm) over Tm adaptation data-points
of the m-th speaker, similar to the SI case:

F(θm) = −
Tm∑

t

logP (st|xm
t ; θm) . (4)

given speech samples xt and tied state labels st
We investigated the use of LHUC with three different

non-linearities φl: in addition to the standard sigmoid, we
use rectifying linear units [7] and Maxout units [17] which
we proposed for ASR in [6]. Rather than applying any ex-
plicit function, the maxout network groups linear activations,
and passes forward the maximum value in each group:

hl
i =

K−1
max
k=0

(zlj+k), j = i.K (5)

where the zli are the linear outputs of the l-th layer.
Our hybrid DNNs again use 2048 hidden units per layer,

but with 12,000 tied-state outputs. The input features are
again PLPs with first and second derivatives, and 9 frames
of context in total. For the maxout non-linearity we set the
number of hidden maxout units to 1500, with a group size
of two. All models had fMLLR applied to the input feature
space. The LHUC nets were trained only on the 143 hours of

TED data. All adaptation on the test set was performed on a
per-talk basis using the output from a first-pass decode.

We also trained a single DNN system on a combination
of the TED data and the AMI corpus setup (b), with sequence
training following the recipe of [8]. As we will show in the
results section, the use of the AMI corpus appears to partic-
ularly benefit performance on tst2013, perhaps due to its
poorer match to the pre-2010 TED data.

3.3. Results

We present development results on tst2011 generated with
manual segmentations. Table 4 compares performance of
tandem MLAN systems with a baseline trained purely on in-
domain features. Consistent with previous results, it may be
seen that the use of OOD data gives significant performance
improvements: it is interesting to see that the use of entirely
mismatched narrowband telephone speech from Switchboard
still leads to a 13.5% relative WER reduction with the 3gram
LM. The results of the Hybrid LHUC systems are shown in
Table 5 (these results are not fully comparable with the re-
sults from the previous table as a weaker LM is used). The
LHUC technique leads to gains with all three types of non-
linearity investigated, and appears to be complementary to
the use of fMLLR transforms on the input space. Both the
ReLU and Maxout non-linearities appear to derive greater
benefit from LHUC.

Model 3gram 4gram
Baseline tandem 12.6 -
SWB MLAN 10.9 10.3
AMI MLAN 11.2 9.8
ROVER - 9.3

Table 4: Tandem MLAN DNN development results on
tst2011. All systems are trained with MPE.

Model WER (%)
DNN 15.2

+LHUC 13.7 (-9.9)
+fMLLR 13.9 (-8.5)

+LHUC 12.9 (-15.1)
ReLU 15.2

+LHUC 13.5 (-11.2)
+fMLLR 13.6 (-10.5)

+LHUC 12.7 (-16.4)
Maxout 14.3

+LHUC 12.8 (-10.4)
+fMLLR 12.5 (-12.6)

+LHUC 11.9 (-16.8)

Table 5: Hybrid DNN development results on tst2011 us-
ing weak 3gram LM. Relative improvements are given in
parentheses w.r.t. the corresponding SI model.
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Model WER (%)
2013 systems

AMI MLAN 22.9
Final submission 21.5

HTK tandem systems
AMI MLAN 18.1
SWB MLAN 17.2

Kaldi hybrid systems
ReLU + LHUC 18.4
MaxOut + LHUC 18.7
TED+AMI Seq 15.3

ROVER combinations
Tandem MLAN 16.6
All Hybrid 15.3
All systems 14.4

Table 6: Final systems with automatic segmentation on
tst2013

Finally, we present results on tst2013 with automatic
segmentation in Table 6. All these results use lattice rescor-
ing with the 751MW 4gram model. The system comina-
tion weights for ROVER were tuned on the development
sets dev2010, tst2010 and tst2011. Note that our
scoring is not entirely consistent with that performed in the
2013 evaluation: we obtain hypothesis-to-reference align-
ments over the entire talk, rather than on a per utterance ba-
sis. We believe this approach is fairer as it makes the scoring
more robust to slight discrepancies in segment timings be-
tween the human reference and the automatic system, which
can lead to single words being counted as a deletion error in
one segment and an insertion error in the adjoining segment.
For comparison, our final 2013 scores 21.5% with full-talk
scoring, compared to 22.1% by the official method.

From the table, we see that the new VAD system gives
an absolute WER reduction of 3.8% on the AMI MLAN sys-
tem, which is otherwise unchanged from 2013. Again, the
two tandem MLAN systems are highly complementary when
used in combination; the sequence-trained DNN trained with
both TED and AMI data seems to perform particularly well
on the tst2013, perhaps reflecting the more diverse range
of accents in this test set. Finally, the tandem and hybrid sys-
tems are seen to be complementary, resulting in a further re-
duction in WER to 14.4%. On the tst2014 test set, this fi-
nal system has an official score of 12.7%. However, as noted
above, this result includes a number of erroneous insertions
and deletions at utterance boundaries. Scoring on a per-talk
basis against the same reference transcription yields a WER
of 10.7%.

4. German system
A major hurdle in achieving high-quality recognition lies in
the collection of appropriate training data, both for acoustic
modelling and language modelling. For acoustic modelling,

participants in this year’s ASR evaluation track were pro-
vided with German data from the Euronews corpus, a speech
corpus that contains news broadcasts in a multitude of lan-
guages [18, 19]. The permitted training data was not limited
to Euronews, however. Any speech recording made before a
certain cut-off date (17/07/2012 ) could be included. We have
chosen to include recordings of plenary sessions of the Euro-
pean parliament, made between January 2007 and December
2010. These recordings are publicly available online, along
with their approximate transcriptions [20, 21]. Both text and
audio are available in German making this data readily us-
able for acoustic model training. We will henceforth refer
to this set of data as Europarl. Lastly, we have included the
GlobalPhone corpus in the training data [22].

For LM training, we used the same method that was de-
scribed in [20] and used in the ASR track of IWSLT 2013.
Briefly, it consists of selecting 30% of the training data ac-
cording to maximum cross-entropy with the target domain
[23]. Then, a 3-gram language model is trained on this se-
lected data using Kneser-Ney smoothing and a vocabulary
is determined by selecting the top 1-grams in this model,
ranked according to decreasing smoothed 1-gram probabil-
ity. Finally, 4-gram LM training is performed on the same
data selection, in which the words are restricted to those in
the chosen vocabulary. RNN language model were trained
using the RNNLM toolkit [24]. During evaluation, these
RNN models were used to rescore 100-best lists, i.e. the
100 most likely utterance recognition hypotheses, that were
generated with the 4-gram LM.

4.1. Language Modelling

German Language models were trained on all the German
monolingual text corpora provided in the ACL statistical ma-
chine translation workshop 2014 [25], and the in-domain text
data provided by the organisers of IWSLT 2014. They are
listed in table 7. The text in each of these corpora was
tokenised as follows: first, all the punctuation is removed.
Then all numbers in the text are expanded, as are the most
common units, e.g. currency, distance, volume, weight, etc.
Any word that is completely capitalised, or in which the let-
ters are separated by full stops, is treated as an abbreviation,
and its letters are spelled out. For further details, see [20].

Full-sized 4-gram LMs are trained on each of these text
corpora, after which they are interpolated. The interpolation
weights are optimised, so as to reduce the perplexity of the
resulting LM on an in-domain text corpus, here the text of
dev2012. Since the list of words contained in this LM is
prohibitively large for ASR, it has to be limited to the top
words in the ranked list described above. Choosing the size
of the vocabulary is a trade-off between model perplexity and
OOV-rate, as is shown in Table 8. We have opted for a vocab-
ulary of size 300k. This list of words is turned into a lexicon
for ASR, as discussed below, in section 4.2. We will refer
to this lexicon as dict1. Since the final 4-gram LM is too
large to use in ASR directly, we prune it with a threshold of
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corpus 106 words
Europarl-v7 47.4
News Commentary 4.5
News Crawl 2007 31.5
News Crawl 2008 107.9
News Crawl 2009 101.6
News Crawl 2010 45.9
News Crawl 2011 252.8
News Crawl 2012 319.7
News Crawl 2013 543.0
IWSLT 2.8
Total 1455.0

Table 7: The different training corpora used for German lan-
guage modelling, and their sizes

#words ppl oov-rate (%)
1 · 105 235.45 4.22
2 · 105 261.49 2.85
3 · 105 274.33 2.36
4 · 105 280.29 2.14

Table 8: Perplexities on dev2012, along with the OOV-rate
of the resulting 4-gram LMs, limited to different vocabulary
sizes.

10−7. The resulting reduced LM will be referred to below as
LM1. For RNN training, the vocabulary was further reduced
to 50k, for computational reasons. We train it on a random
selection of 10M lines from the corpora listed in table 8. The
hidden layer of the network contains 30 nodes.

4.2. Acoustic Modelling

As discussed above, data sources available for German
acoustic model training are Euronews, GlobalPhone, and Eu-
roparl. Since Europarl has only approximate transcriptions,
we have to apply some form of light supervision on it, in or-
der to obtain a subset in which the transcriptions are accurate.
We do this using the same method as in [26]. We use an ini-
tial acoustic model, GMM0, and a biased language model,
LM0, to perform recognition on the entire data, and define
a new training set which contains only the segments where
the recognition matches the approximate transcriptions. Al-
though a new model trained on this set can in principle be
used to repeat the procedure iteratively, there are no guar-
antees that models from such subsequent iterations will be
significantly superior. On the contrary, one even runs the risk
of degrading the model by applying this technique iteratively
[27]. We have therefore only run a single iteration of data se-
lection on Europarl. The biased Language model, LM0, was
obtained by interpolating the LM provided with GlobalPhone
with a language model trained on the annotations of the Eu-
roparl speech data. The initial acoustic model, GMM0, was
trained on a combination of Euronews and GlobalPhone. The

corpus GP EN EP total
#hours 14.85 57.35 79.90 152.10

Table 9: The size of all the different data sources for acoustic
model training.

data WER (%)
GP 49.64
+ EN 44.05
+ EP 41.38

Table 10: Word Error Rates on dev2012 using different
acoustic models

acoustic features were extracted in frames of 25 ms, with
a shift 10 ms. 13 MFCC coefficients in each frame were
stacked within context windows of 9 frames, and the result-
ing 117-dimensional representations were projected down to
40 dimensions using LDA/MLLT [28]. GMM0 has 3000
context dependent states, with a total of 48000 Gaussians.
No adaptation was performed. From an initial estimated to-
tal of 733 hours of Europarl data, this model allows us to
select about 80 hours. This number may seem small, but
the total data is likely an overestimate due to overlapping
speech segments. Moreover, the majority of the data consists
of non-German segments, the speech and transcriptions of
which are translated into German separately. The disagree-
ment between text and audio is therefore very large. The
amount of useful data from each corpus is listed in table 9,
where GP stands for GlobalPhone, EN for Euronews, and EP
for Europarl.

To demonstrate the benefits of adding each of these data
sets, we have trained simple acoustic models on Global-
Phone (GP), on a combination of GlobalPhone and Euronews
(GP+EN), and on all data combined (GP+EN+EP). The dic-
tionary used in this training, which we will call dict0 com-
prises the GlobalPhone dictionary, augmented with all the
OOV words from the three training sets, altogether about
140000 words. The transcription of new words is generated
with Sequitur G2P [29], trained on the 40000 words of Glob-
alPhone. The performance of the resulting models was eval-
uated on dev2012. The WERs are shown in table 10. We
can see that, even though the domains of the different train-
ing sets are quite far apart, and none close to that of the de-
velopment set, they all contribute to some extent in improv-
ing the results. We will therefore use a combination of these
three sets for all acoustic model training that follows. The
error rates shown in table 10 are rather high because little ef-
fort was taken to tune these evaluations to the target domain.
dict0 is a relatively small dictionary (for German), and the
language model LM0 is biased towards Europarl, not TED.

Using all available training data, i.e. GP+EP+EN, we
perform speaker-adaptive training in order to obtain speaker
dependent GMM-HMM models. The number of context
dependent states in this new model was set at 9000, and
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the number of Gaussians to 100000. We call this model
GMM1. Repeating the evaluation above with this model
yields a WER of 37.65%, an absolute improvement of al-
most 4%. When we use the same acoustic model in con-
junction with the LM1, the pruned LM trained in section 4.1
and its associated dictionary, dict1, the WER decreases fur-
ther to 35.88%. This improvement is quite modest, consid-
ering the complexity of this LM and the fact that is specifi-
cally optimised for the TED domain. A likely reason is that
the dictionary only contains about 40000 pronunciations that
were manually transcribed. All the others have been gener-
ated using a grapheme-to-phoneme (G2P) conversion. All er-
rors made during this process are propagated further through
the ASR evaluation. To reduce this problem, we have per-
formed dictionary expansion as proposed in [9]. In practice,
we used G2P to generate the 10 most likely pronunciations
for every word in dictionary dict1, including the 40000 from
the original GlobalPhone lexicon. For the latter, if none of
the 10 generated pronunciations matched the original pho-
netic transcription, it was added as an 11th pronunciation.
Initially, all pronunciations of a word are assigned a uniform
probability. An alignment of the training data using model
GMM1 is then made, where the different pronunciations of
each word of the transcription are set in parallel. The re-
sulting alignments show the pronunciation of each word that
best fits its acoustic realisation. Counting the occurrences
of each pronunciation then allows an update of their prob-
ability in the dictionary, and a re-alignment. This is an it-
erative process in which the dictionary is refined in each it-
eration. Every few iterations, the acoustic model can be re-
trained as well. Here, we have chosen to do just 2 itera-
tions, in each of which the acoustic model is retrained. We
will refer to the resulting acoustic model as GMM2. The re-
sulting dictionary, dict2, is an improvement over dict1, not
only because it contains pronunciation probabilities, but also
because it lists pronunciations that make sense acoustically,
rather than enforcing G2P’s best guess. We ran an evaluation
on dev2012 with this pronunciation lexicon, using GMM1

and the pruned LM, LM1. The resulting WER was 29.86%,
an absolute improvement of almost 6% compared to the orig-
inal dict1. When replacing the acoustic model GMM1 for
GMM2, the WER becomes slightly higher: 30.91%. A pos-
sible explanation is that the degrees of freedom introduced
by pronunciation variation allow the model to over-train.

A DNN is then trained up in a hybrid configuration
with model GMM2. This DNN consists of 6 hidden lay-
ers, with 2048 nodes each, connecting through a logistic
sigmoid non-linearity. The output layer performs a soft-
max operation. At the input of the network are the MLLT-
transformed speaker-adapted MFCC features we described
above, stacked within a context window of 11 frames, which
results in a 440-dimensional representation per frame (40×
11). The output is a vector of posterior probabilities over
the context-dependent states of the GMM, converted into
scaled likelihoods using prior probabilities obtained from

GMM1 + dict0 + LM0 37.65
GMM1 + dict1 + LM1 35.88
GMM1 + dict2 + LM1 29.86
GMM2 + dict2 + LM1 30.91

+ LM rescore 28.07
+ RNNLM rescore 27.59

GMM2 + DNN + dict2 + LM1 27.83
+ LM rescore 25.33
+ RNNLM rescore 24.90

Table 11: The results of the German system on dev2012

training data [30]. The network is pre-trained with layer-wise
RBM training, and finetuned by optimising a negative log-
likelihood cost function. Evaluating this hybrid DNN setup
on dev2012 gives a WER of 27.83%. Note that all results
thus far have either been obtained with the Europarl LM, or
with a heavily pruned LM optimised for TED. The full TED-
specific model has not been used due to computational limi-
tations. We can, however, rescore the results with this larger
LM, obtaining further reductions in WER. Similarly, all of
the previous results can be rescored using the RNNLM. All
results on dev2012 are summarised in table 11.The system
has an official score of 35.7% on the tst2014 test set.

5. Conclusions
We have described our ASR systems for the English and Ger-
man 2014 IWSLT evaluation. Improvements to our English
system, most particularly the use of AMI data, and the de-
ployment of hybrid DNNs with LHUC and sequence train-
ing, result in a relative WER reduction of around 30% on the
challenging tst2013 evaluation set compared to our 2013
system. We intend to carry over these benefits to our Ger-
man system, where a lack of suitable training data remains a
challenge.

In the future, we plan to further investigate methods for
robust DNN training and adaptation when the training data
is limited or poorly-transcribed, something which should en-
able us to develop systems in new languages more rapidly.
We also plan to work on removing the dependence on a
dictionary completely, perhaps by adapting grapheme-based
models. We also aim to re-incorporate RNN language mod-
els in our most competitive English system.
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Abstract

We discuss various improvements to our MEANT tuned
system, previously presented at IWSLT 2013. In our
2014 system, we incorporate this year’s improved ver-
sion of MEANT, improved Chinese word segmentation,
Chinese named entity recognition and dedicated proper
name translation, and number expression handling. This
results in a significant performance jump compared to
last year’s system. We also ran preliminary experiments
on tuning to IMEANT, our new ITG based variant of
MEANT. The performance of tuning to IMEANT is com-
parable to tuning on MEANT (differences are statisti-
cally insignificant). We are presently investigating if
tuning on IMEANT can produce even better results, since
IMEANT was actually shown to correlate with human
adequacy judgment more closely than MEANT. Finally,
we ran experiments applying our new architectural im-
provements to a contrastive system tuned to BLEU. We
observed a slightly higher jump in comparison to last
year, possibly due to mismatches of MEANT’s similar-
ity models to our new entity handling.

1. Introduction

In this paper we present an improved version of our
MT system tuned against MEANT (Lo and Wu [1, 2];
Lo et al. [3]), a semantic MT evaluation metric which
has been proven to highly correlate with human ade-
quacy judgments. We employ an improved version of
MEANT that correlates more closely with human ad-
equacy judgments, resulting also in translation perfor-
mance gains compared to the system tuned against our
previous version of MEANT from the IWSLT 2013 eval-
uation campaign (Lo et al. [4]). This improved variant
of MEANT uses f-score to aggregate lexical similari-
ties within role filler phrases instead of linear average.

We also introduced several changes to last year’s base-
line, including improved Chinese word segmentation,
improved Chinese named entity recognition combined
with dedicated proper name translation, and number ex-
pression handling.

We also experimented with tuning against IMEANT
(Wu et al. [5]), a new inversion transduction grammar
(ITG) version of MEANT, that was shown this year to
correlate with human adequacy judgements more closely
than MEANT. Despite this fact, we observed that tuning
to IMEANT is statistically indistinguishable from tun-
ing to MEANT.In the past few years, MT research has
mainly focused on evaluation using fast and cheap n-
gram based MT evaluation metrics such as BLEU [6]
which assume that a good translation is one that has
similar lexical n-grams as the reference translation. Al-
though such metrics tend to enforce fluency, it has been
shown that these metrics generally do not emphasize
meaning preservation, and thus are weak at enforcing
translation adequacy (Callison-Burch et al. [7]; Koehn
and Monz [8]).

Unlike BLEU, or other n-gram based metrics, the
MEANT family of metrics adopt the principle that a
good translation is one in which humans can success-
fully understand the central meaning of the input sen-
tence as captured by the basic event structure “who did
what to whom, when, where and why” (Pradhan et al. [9]).
MEANT measures similarity between an MT output and
a reference translation by comparing the similarities be-
tween the semantic frame structures of the MT output
and reference. We have shown that MEANT correlates
better with human adequacy judgments than commonly
used MT evaluation metrics such as BLEU [6], NIST
[10], METEOR [11], CDER [12], WER [13], and TER
[14].
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2. Related work

Surface-form oriented metrics like BLEU [6], NIST [10],
METEOR [11], CDER [12], WER [13], and TER [14]
do not correctly reflect the meaning similarities of the
basic event structure “who did what to whom, when,
where and why” of the input sentence. In fact, many
studies (Callison-Bursh et al. [7]; Koehn and Monz [8])
report cases where BLEU strongly disagrees with hu-
man adequacy judgment. This has caused a recent surge
of work on developing MT evaluation metrics that out-
performs BLEU in correlation with human judgment.
AMBER [15] shows a high correlation with human ad-
equacy judgment (Callison-Burch et al. [16]); however,
it is very hard to indicate what errors the MT systems
are making.

Many automatic metrics that aggregate semantic sim-
ilarity have been introduced, but no tuning has been done
using these metrics, because of their expensive run time.
Gimenez and Marquez [17, 18] introduced ULC, an au-
tomatic metric that incorporates several semantic simi-
larity features and shows improved correlation with hu-
man judgement of translation quality [19, 17, 20, 18].
SPEDE [21] is a metric that integrats probabilistic FSM
and PDA models that predicts the edit sequence needed
for the MT output to match the reference. SAGAN [22]
is a semantic textual similarity metric based on a com-
plex textual entailment pipeline. These aggregated met-
rics require sophisticated feature extraction steps; fur-
thermore, they typically rely on several dozens of pa-
rameters to tune and use expensive linguistic resources,
like WordNet and paraphrase tables. These metrics them-
selves are expensive in training and tuning due to the
large number of parameters that need to be estimated,
thus to tune against these metrics can be extremely ex-
pensive.

3. The MEANT family of metrics

3.1. MEANT

MEANT (Lo et al. [3]) is a weighted f-score over the
matched semantic role labels of automatically aligned
semantic frames and role fillers. MEANT outperforms
BLEU, NIST, METEOR, WER, CDER and TER in cor-
relation with human adequacy judgment. MEANT is
easily portable to other languages requiring only an au-
tomatic semantic parser and a large monolingual cor-
pus in the output language for identifying the semantic
structures and to establish the lexical similarity between

the semantic role fillers of the reference and translation.
More precisely, MEANT is computed as follows:

1. Apply an automatic shallow semantic parser to
both the reference and machine translations. (Fig-
ure 1 shows examples of automatic shallow se-
mantic parses on both reference and machine trans-
lations.)

2. Apply the maximum weighted bipartite matching
algorithm to align the semantic frames between
the reference and machine translations according
to the lexical similarities of the predicates. ([23]
proposed a backoff algorithm that evaluates the
entire sentence of the MT output using the lexi-
cal similarity based on the context vector model,
if the automatic shallow semantic parser fails to
parse the reference or machine translations.)

3. For each pair of the aligned frames, apply the max-
imum weighted bipartite matching algorithm to
align the arguments between the reference and ma-
chine translations according to the lexical similar-
ity of role fillers.

4. Compute the weighted f-score over the matching
role labels of these aligned predicates and role
fillers as follow :

q0i,j ≡ ARG j of aligned frame i inMT

q1i,j ≡ ARG j of aligned frame i in REF

w0
i ≡ #tokens filled in aligned frame i of MT

total #tokens in MT

w1
i ≡ #tokens filled in aligned frame i of REF

total #tokens in REF
wpred ≡ weight of similarity of predicates
wj ≡ weight of similarity of ARG j

ei,pred ≡ the pred string of the aligned frame i of MT
fi,pred ≡ the pred string of the alignedframe i of REF
ei,j ≡ the role fillers of ARG j of the aligned frame i of MT
fi,j ≡ the role fillers of ARG j of the aligned frame i of REF

s(e, f) = lexical similarity of token e and f

prece,f =

∑
e∈e max

f∈f
s(e, f)

| e |

rece,f =

∑
f∈f max

e∈e
s(e, f)

| f |

si,pred =
2 · precei,pred,fi,pred

· recei,pred,fi,pred

precei,pred,fi,pred
+ recei,pred,fi,pred

si,j =
2 · precei,j ,fi,j · recei,j ,fi,j
precei,j ,fi,j + recei,j ,fi,j
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Figure 1: Examples of automatic shallow semantic parses. The input is parsed by a Chinese automatic shallow
semantic parser. The reference and MT output are parsed by an English automatic shallow semantic parser. There are
no semantic frames for MT3 since there is no predicate.

precision =

∑
i w

0
i

wpredsi,pred+
∑

j wjsi,j

wpred+
∑

j wj |q0i,j |∑
i w

0
i

recall =

∑
i w

1
i

wpredsi,pred+
∑

j wjsi,j

wpred+
∑

j wj |q1i,j |∑
i w

1
i

MEANT =
2 · precision · recall
precision + recall

where q0i,j and q1i,j are the argument of type j in frame i
in MT and REF respectively. w0

i and w1
i are the weights

for frame i in MT/REF respectively. These weights es-
timate the degree of contribution of each frame to the
overall meaning of the sentence. wpred and wj are the
weights of the lexical similarities of the predicates and
role fillers of the arguments of type j of all frame be-
tween the reference translations and the machine trans-
lations. There is a total of 12 weights for the set of
semantic role labels in MEANT as defined in Lo and
Wu [24]. For MEANT, they are determined using su-
pervised estimation via a simple grid search to optimize
the correlation with human adequacy judgments (Lo and
Wu [1]). For UMEANT (Lo and Wu [2]), they are es-
timated in an unsupervised manner using relative fre-

quency of each semantic role label in the references and
thus UMEANT is useful when human judgments on ad-
equacy of the development set are unavailable.

3.2. IMEANT

IMEANT (Wu et al. [5]) is an inversion transduction
grammar based variant of MEANT. IMEANT uses a a
length-normalized weighted BITG [25, 26, 27, 28] to
constrain permissible token alignment patterns between
aligned role filler phrases. More precisely, IMEANT
differs from MEANT in the definition of si,pred and si,j ,
as follows:

G ≡ ⟨{A} ,W0,W1,R,A⟩
R ≡ {A → [AA] ,A → ⟨AA⟩,A → e/f}

p ([AA] |A) = p (⟨AA⟩|A) = 1

p (e/f |A) = s(e, f)

si,pred = lg−1




lg
(
P
(

A ∗⇒ ei,pred/fi,pred|G
))

max(| ei,pred |, | fi,pred |)




si,j = lg−1




lg
(
P
(

A ∗⇒ ei,j/fi,j |G
))

max(| ei,j |, | fi,j |)
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where G is a bracketing ITG whose only non terminal
is A, and R is a set of transduction rules with e ∈ W0∪
{ϵ} denoting a token in the MT output (or the null token)
and f ∈ W1 ∪ {ϵ} denoting a token in the reference
translation (or the null token).

The rule weight function p is set to be 1 for structural
transduction rules, and for lexical transduction rules it
is defined using MEANT’s context vector model based
lexical similarity measure. The Saers et al. [29] algo-
rithm is used to compute the inside probability of a pair
of segments, P

(
A ∗⇒ e/f|G

)
.

Given this, si,pred and si,j now represent the length
normalized BITG parse scores of the predicates and role
fillers of the arguments of type j between the reference
and machine translations.

4. Baseline

In this section, we describe in detail our systems for
the Chinese-English and English-Chinese TED talk MT
tasks in terms of data, preprocessing, SMT pipeline and
MEANT settings.

4.1. Data

Our main goal for 2014 was to improve our MEANT
tuned system and compare the results to our 2013 sys-
tem. For this purpose, we deliberately constrained our
training data to 2013 in-domain data only. Thus we use
the English-Chinese parallel data from the IWSLT 2013
training set and used the output side to train the language
model.

Similarly, our development set was restricted to the
IWSLT 2013 development set. Since our main focus
was to test our performance in comparison to 2013, we
purposely targeted the IWSLT 2013 set more than the
IWSLT 2014 set. However, we do present IWSLT 2014
results for our BLEU tuned system for both English-
Chinese and Chinese-English.

The English sentences were normalized for punctu-
ation, tokenization, and truecasing.

Obviously, higher scores could have been obtained
by training on the IWSLT 2014 data set instead of 2013.

4.2. SMT pipeline

With the goal of improving MT utility by using our new
improved version of MEANT as an objective function
to drive minimum error rate training (MERT) [30] of
state-of-the-art MT systems, we set up our baseline us-

ing the translation toolkit Moses [31]. In our experi-
ments, we are using the flat phrase-based MT. The lan-
guage models are trained using the SRI language model
toolkit [32]. For both translation tasks, we used a 6-
gram language model. We use ZMERT [33] to tune the
baseline since it is a reliable implementation of MERT
and is fully configurable and extensible allowing us to
easily incorporate our new evaluation metrics.

5. Experiments

5.1. MEANT improvements

This year’s system incorporated new improvements to
the MEANT metric, consisting of using f-score in or-
der to aggregate lexical similarities within semantic role
filler phrases instead of Mihalcea’s [34] method used
in our last year system. We also tried to extend the
window-size from 3 to 5 for the context vector model
trained on the word segmented monolingual English gi-
gaword corpus.

Since UMEANT (Lo and Wu [35]) has been shown
to be more stable when evaluating translations across
different language pairs (Machacek and Bojar [36]), we
use UMEANT for evaluating our output.

5.2. Tuning to IMEANT

In this paper, we also ran preliminary experiments on
tuning to IMEANT [5], the new inversion transduction
grammar based variant of MEANT, that achieves higher
correlation with human adequacy judgments of MT out-
put quality than MEANT and its variants. Addanki et
al. [28] showed empirically that the semantic role re-
ordering that MEANT uses is covered by ITG constraints.

5.3. Word segmentation improvements

For Chinese sentences, we improved the segmentation
of Chinese words. We performed extensive compar-
isons between four word segmentation approaches. The
results reported this year were obtained using the ICT-
CLAS word segmenter [37].

5.4. Named entity translation improvements

We also used our own new implementation of Chinese
named entity recognition and a dedicated proper name
translation, where we use our own library translator based
on Wikipedia data. We implemented an adequate library
generator for our new named entity recognizer.
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Table 1: Translation quality of the participated Chinese-English MT systems on the IWSLT 2013 test set: (a) 2013
MEANT-tuned system, (b) 2014 improved MEANT-tuned system.

uncased (internal)
System BLEU NIST METEOR TER WER PER CDER MEANT
2013 MEANT-tuned system 10.49 4.54 4.24 73.97 75.77 59.17 70.94 31.42
2014 MEANT-tuned system 13.56 4.97 4.69 70.48 73.98 56.19 69.18 39.79

Table 2: Translation quality of the participated Chinese-English MT systems on the IWSLT 2013 test set tuned against
MEANT and IMEANT respectively.

uncased (internal)
System BLEU NIST METEOR TER WER PER CDER MEANT
MEANT-tuned 13.56 4.97 4.69 70.48 73.98 56.19 69.18 39.79
IMEANT-tuned 13.55 4.99 4.68 70.48 73.60 55.78 68.85 34.21

5.5. Number expression translation improvements

We incorporated our HKUST number expression recog-
nition and translation module this year.

6. Results

For IWSLT 2014 we submitted our new architecturally
changed baseline for the BLEU tuned system for both,
English-Chinese TED talks and Chinese-English TED
talks as a primitive task. We also include our latest re-
sults on the MEANT-tuned Moses flat phrase-based sys-
tem MT system, as well as our IMEANT-tuned system
for Chinese-English TED talks MT task.

Table 1 shows that our new MEANT tuning using f-
score as an aggregation function outperforms 2013 sys-
tem. We see a high jump in terms of BLEU scores be-
tween all our MEANT tuned systems for last year and
this year.

Table 2 shows also that IMEANT, the ITG variant of
MEANT, produces almost identical results in compari-
son to our MEANT-tuned system. The differences are
statistically insignificant. We are presently investigat-
ing whether tuning to IMEANT can produce even bet-
ter results, since IMEANT was actually shown to corre-
late more closely with human adequacy judgment than
MEANT.

Tables 3 and 4 show that our new word segmenta-
tion, named entity translation modules, and number ex-
pression translation modules incorporated in this year’s
system improved the performance of our BLEU and TER
tuned systems respectively in comparison to our 2013
BLEU and TER tuned systems.

Tables 5 and 6 represent our official submitted sys-
tems for IWSLT 2014 evaluation campaign for Chinese-
English and English-Chinese. We evaluate on both the

2013 and 2014 test sets. For English-Chinese trans-
lations, only the character level BLEU and TER were
given.

7. Conclusion

In this paper we have presented an improved version of
our MEANT tuned system which shows significant im-
provements over last year’s model. The major changes
to the system include improved Chinese word segmen-
tation, improved Chinese named entity recognition, a
new dedicated proper name translation and new number
expression handling. We also experimented with tuning
against IMEANT, our ITG based variant of MEANT.
IMEANT performance was surprisingly similar to that
of MEANT despite the fact that IMEANT has been shown
to correlate better with human adequacy judgment than
MEANT. We are currently looking at the possible rea-
sons behind such a result.
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Table 3: Translation quality of the participated Chinese-English MT systems on the IWSLT 2013 test set: (a) 2013
BLEU-tuned system, (b) 2014 improved BLEU-tuned system.

uncased (internal)
System BLEU NIST METEOR TER WER PER CDER MEANT
2013 BLEU-tuned system 11.16 4.61 4.32 74.69 77.17 59.15 71.84 31.46
2014 BLEU-tuned system 13.85 5.01 4.55 68.70 72.27 54.91 67.45 32.93

Table 4: Translation quality of the participated Chinese-English MT systems on the IWSLT 2013 test set: (a) 2013
TER-tuned system, (b) 2014 improved TER-tuned system.

uncased (internal)
System BLEU NIST METEOR TER WER PER CDER MEANT
2013 TER-tuned system 10.65 2.96 3.33 71.09 71.51 60.72 69.10 38.38
2014 TER-tuned system 11.16 4.01 3.97 66.49 68.43 56.93 65.78 39.18
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Abstract
This paper describes the systems submitted by FBK for the
MT and SLT tracks of IWSLT 2014. We participated in
the English-French and German-English machine translation
tasks, as well as the English-French speech translation task.
We report improvements in our English-French MT systems
over last year’s baselines, largely due to improved techniques
of combining translation and language models, and using
huge language models. For our German-English system, we
experimented with a novel domain adaptation technique. For
both language pairs we also applied a novel word trigger-
based model which shows slight improvements on English-
French and German-English systems. Our English-French
SLT system utilizes MT-based punctuation insertion, recas-
ing, and ASR-like synthesized MT training data.

1. Introduction
FBK’s machine translation activities in the IWSLT 2014
Evaluation Campaign focused on the speech recognition and
translation of TED Talks1, a collection of public speeches on
a variety of topics and with transcriptions available in multi-
ple languages. In this paper, we describe our participation in
the English-French and German-English Machine Transla-
tion tasks as well as in the English-French Spoken Language
Translation task.

After a brief introduction to the baseline MT system in
Section 2 employed for all tasks, in Section 3 we overview
the data selection techniques used to extract TED-related
data from the available huge and generic monolingual and
bilingual corpora. Then, in Section 4 we describe the meth-
ods applied to combine translation models, reordering mod-
els, and language models trained on multiple corpora. Sec-
tions 5-7 give details about the actual MT and SLT systems
built for evaluation task.

2. Baseline SMT system
All our task-specific systems rely on the well-known and
state-of-the-art phrase-based Moses toolkit [1]; and exploit
the huge amount of parallel and monolingual training data

1http://www.ted.com/talks

provided by the organizers. Our common baseline system
features a statistical log-linear model including a phrase-
based translation model (TM), a lexicalized phrase-based re-
ordering models (RM), one or more language models (LMs),
as well as distortion, word and phrase penalties.

Tuning of the baseline system is performed on tst2010
by optimizing BLEU using Minimum Error Rate Training
[2]. However, all available development data sets, namely
dev2010 and tst2010-2012, are included in the in-domain
training data to build the systems actually employed for the
2014 evaluation campaign. The task-specific systems differ
in the way training data are processed and filtered, and how
the models are trained and combined.

3. Data Filtering
The idea of data selection is to find the subset of sentences
within an out-of-domain corpus that better fits with a given
in-domain corpus. To this purpose, we follow the procedure
described in [3], implementing the bilingual cross-entropy
difference [4], i.e. an adaptation of the cross-entropy differ-
ence scoring technique introduced by [5] toward bitext data
selection, by means of XenC toolkit [6].

First, all sentence pairs of the out-of-domain corpus are
associated with source- and target-side scores, each of which
are computed as the basic technique proposes for the cor-
responding monolingual scenarios. We use the in-domain
(TED) data as a seed and LMs of order 2.2 Then, the sen-
tences are sorted according to the sum of these two scores.
Finally, the optimal split between useful and useless sen-
tences is found by minimizing the source-side perplexity of
a development set on growing percentages of the sorted cor-
pus. In our experiments, dev2010 and tst2010 are concate-
nated and used as the filtering development set.

4. Domain Adaptation
In this section, we summarize several well-known techniques
for domain adaptation we applied to build high-performance
models for our SMT submissions.

2This small LM order permits a very fast computation of the scores, with-
out losing performance.
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4.1. Translation model combination

Three methods are applied in our submissions to combine the
TM built on the available parallel training corpora: namely,
fill-up [7, 8], back-off, and interpolation.

4.1.1. Fill-up

In the fill-up approach, out-of-domain phrase pairs that do
not appear in an in-domain (TED) phrase table are added,
along with their scores – effectively filling the in-domain ta-
ble with additional phrase translation options. The fill-up
process is performed in a cascaded order, first filling in miss-
ing phrases from the corpora that are closest in domain to
TED. Moreover, out-of-domain phrase pairs with more than
four source tokens are pruned.

Following [7, 8] the fill-up approach adds k-1 provenance
binary features to weight the importance of out-of-domain
data, where k is the number of phrase tables to combine.

4.1.2. Back-off

The back-off approach works similarly to the fill-up tech-
nique, but does not add any provenance binary features.

4.1.3. Linear interpolation

Linear interpolation of component models is a widely used
approach for building a domain adapted multi-model. Ap-
proaches such as using monolingual data or pairwise rank-
ing optimization to set interpolation weights [9, 10], per-
plexity minimization [11], and combining lemmatized and
non-lemmatized models [12] have been used in the past for
improved domain adaptation. In this paper, we leverage a
recent work of [13] which exploits the use of source-side of
the parallel in-domain corpus for domain adaptation. This
approach calculates a similarity score (known as BLEU-PT)
for each of the out-domain translation models on the source
in-domain data. We use these similarity scores and further
normalize them by the number of phrases seen in each of the
corresponding out-domain phrase tables. These normalized
scores are then used as linear interpolation coefficients.

In this paper, we perform linear interpolation of out-of-
domain models which results in one translation model. The
in-domain translation model is then filled-up with the afore-
mentioned interpolated out-domain translation model giving
us a single domain adapted model.

4.2. Reordering model combination

All techniques available for combining the TMs can be ap-
plied straightforwardly to combine the RMs. The only dif-
ference regards the fill-up technique: the additional binary
feature is discarded, since it is already present in the corre-
sponding filled-up TM. Hence, a filled-up RM is exactly the
same as a backed-off RM.

4.3. Language model combination

Language models are built from the monolingual training
data, as well as the target language of the parallel data. As
the corpora available in the IWSLT evaluation come from a
number of sources, we apply several methods to combine the
LMs built on the available target language training corpora,
rather than concatenating the data.

4.3.1. Mixture

Monolingual subcorpora can be combined into one mixture
language model [14] by means of the IRSTLM toolkit [15].
The optimization of the internal mixture weights is achieved
through a cross-validation approach on the same training
data; hence no external development set is required. The
mixture LM type can be loaded by Moses as any other LM
type.

4.3.2. Log-linear interpolation

This technique, provided directly within the Moses toolkit,
consists in the log-linear interpolation of the n-gram proba-
bilities from all component LMs. The weight optimization is
performed during the tuning of all Moses features.

4.4. Factored Trigger Models

Cross-lingual lexical triggers have been already studied in
natural language processing [16] and in machine translation
[17]. The latter defined cross lingual triggers as a setup of a
trigger word (fi) in the source language sentence, triggering
a number of words (e0, e1, . . . , en) in the target language sen-
tence. For each trigger source word fi, we calculate point-
wise mutual information (PMI) between that word and the
target triggered words (ej) as shown in Equation 1.

PMIlex(fi, ej) = log
P (fi, ej)

P (fi) · P (ej)
(1)

In this paper, we extend these lexical triggers with ad-
ditional factors such as POS tags and lemmas. Similar to
computing the PMI for lexical triggers we compute corre-
sponding PMIs for the POS tags and lemmas of the trigger
and the triggered words in question. This is shown in the
following equations:

PMIpos(fi, ej) = log
P (POS(fi), POS(ej))

P (POS(fi)) · P (POS(ej))
(2)

PMIlemma(fi, ej) = log
P (LEM(fi), LEM(ej))

P (LEM(fi)) · P (LEM(ej))
(3)

where POS(x) is the part of speech tag of the word x and
LEM(x) is the lemma of the word x. These PMI are com-
puted for all word pairs and then normalized over the whole
parallel corpus. In the end, a factored trigger model (hence-
forth, FTM) contains three different features for each of the
source/target word pair.
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At decoding time, when a phrase-based machine trans-
lation system requests feature values from the FTM for a
phrase pair (fi,...,j , ek,...,l), it returns the average sum of
all the feature values for all word pairs possible within the
phrase pair. Mathematically, it can be denoted as the follow-
ing:

FTMlex(fi,...,j , ek,...,l) =

j∑

z=i

l∑

y=k

PMIlex(fz, ey). (4)

Similarly, POS and Lemma features are also calculated at the
run-time and fed directly to the decoder providing a seamless
integration of factored trigger model in a phrase based ma-
chine translation system. This integration also allows us to
use any tuning algorithm (e.g. MERT, MIRA) easily.

5. English-French MT task
In order to adapt the English-French MT system to the TED-
specific domain and genre, as well as to reduce the size of
the models, data selection (see Section 3) is carried out on
several parallel English-French corpora provided by the or-
ganizers, namely Europarl, CommonCrawl, UN, News Com-
mentary, News Crawl, and Giga, and using the whole WIT3

[18] training corpus as in-domain data.
Different amount of texts were selected from each corpus

ranging from 2% to 30%, which are concatenated together to
build one large parallel corpus containing 2.6M sentences for
a total of 57M English and 63M French running words.

The system for FBK primary submission is built as fol-
lows. Two TMs and two RMs are trained independently
on the parallel in-domain and selected data, using the stan-
dard Moses procedure and MGIZA++ toolkit [19] for word-
alignment; TMs and RMs were combined using the back-off
technique (for both TM and RM), taking WIT3 as the pri-
mary component, for a total of 168M phrase pairs.

The French side of the in-domain and selected data are
also employed to estimate a two-component mixture lan-
guage model (see Section 4.3). A second huge French LM is
estimated as an 8-component mixture on all permitted mono-
lingual French data: namely, the target side of the parallel
training corpora,3 consisting of about 1.4G running words.
Both LMs have order 5 and are smoothed by means of the in-
terpolated Improved Kneser-Ney method [20]; they include
57M and 661M 5-grams, respectively. Finally, the three ad-
ditional features provided by the factored trigger model (see
Section 4.4) are included in the log-linear combination.

Minimum Bayes Risk (MBR) [21] decoding is applied
with its default values.

As already mentioned in Section 2, all available devel-
opment data sets, namely dev2010 and test2010-2012, are
included in the in-domain training data to build the primary
system.

3The monolingual French Gigaword Third Edition replaces the French
side of the parallel Giga English-French corpus employed in the TM and
RM model training.

In order to evaluate the contribution of the individual
components of the FBK system, we submitted several con-
trastive runs.

• contrastive-7: derived from primary system, this sys-
tem does not exploit the factored trigger model;

• contrastive-6: derived from contrastive-7, this system
exploits the stack decoding instead of the MBR decod-
ing;

• contrastive-5: derived from contrastive-6, this system
does not exploit the huge French LM.

Moreover, we submitted 4 runs (contrastive 1-4) which
differ from contrastive 5-7 and the primary run just in one
aspect: contrastive 1-4 do not include the development data
sets in the training data. The aim was to measure the impact
of a limited amount of additional TED talks on the translation
quality.

Finally a ninth run (contrastive-9) was submitted with
a system built on top of the primary, which tests the as-
sumption made during translation modeling that each of the
features in the translation model are independent from one
another. Generalized linear models can be constructed in
a manner that models interactions between predictors (e.g.
[22]). As a preliminary experiment, we test for interactions
between the forward and backward phrase probabilities in
our phrase table, expressed as a multiplication between the
log probabilities.

Several observations can be drawn from the analysis of
the figures reported in Table 1, also supported from prelimi-
nary experiments performed during the development phase.4

• The biggest performance improvement is due to the
use of the large French LMs.

• MBR decoding gives a small but consistent boost in
quality with respect to the stack decoding at the ex-
pense of a limited increase of decoding time.

• The factored trigger model gives a limited, sometimes
negligible, improvement.

• The addition of the dev and test data has little and in-
consistent impact; for tst2014 it slightly tends to im-
prove performance, vice-versa for tst2013. This be-
havior is probably due to small differences among the
data sets; we will investigate this issue, when we will
get the references.

• Our first experiment testing for interactions suggests
that the discriminative model performs better under the
assumption that each phrase table feature is indepen-
dent from one another.

4During the system development many more combinations of the con-
sidered elements were tested.
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task run tst2013 tst2014
BLEU TER BLEU TER

MT En-Fr pr 38.20 44.83 34.24 46.75
cn7 38.13 44.83 34.18 46.61
cn6 37.88 45.05 33.79 47.02
cn5 36.27 47.48 32.07 50.02
cn4 38.16 44.90 33.98 47.03
cn3 38.04 44.93 34.02 46.87
cn2 37.95 45.08 33.67 47.24
cn1 36.73 46.44 32.49 48.81
cn9 37.89 44.98 34.03 46.86

MT De-En pr 25.45 55.59 20.52 63.54
cn 25.76 55.80 20.37 63.37

Table 1: Case-sensitive BLEU and TER results for FBK’s submis-
sions to the English-French and German-English MT tasks.

The contrastive run 5, was also applied into the joint sub-
mission by the EU-Bridge project5 partners; details about the
EU-Bridge system are available in a companion paper [23].

6. German-English MT task
Our German-English systems are built on top of the baseline
system (see Section 2. Each system contains one translation
model, reordering model, language model, the factored trig-
ger model and operation sequence model; these models are
then combined in a standard log-linear fashion.

The training data is composed of several publicly avail-
able corpora provided in the IWSLT MT and the WMT 2014
translation tasks. As parallel data the following corpora were
taken into account: WIT3 (version 2014-01) (TED) [18],
German-English Europarl (version 7) (EP), Common Crawl
(CC), MultiUN (UN), and the News Commentary (NC) cor-
pus as distributed by the organizers of the WMT 2014. We
used all the available monolingual corpora provided by the
WMT 2014 translation task. The target side of the parallel
corpora is also used to train our LMs.

unselected selected
De En De En

Corpus Segm Words Words Segm Words Words
TED 171K 3.3M 3.46M 171K 3.3M 3.46M
CC 2.4M 56M 58M 462K 10.5M 10.7M
EP 1.9M 52M 53M 188K 3.58M 3.64M
UN 162K 5.8M 5.66M 45K 1.59M 1.52M
NC 200K 5.25M 5.0M 59K 1.4M 1.3M

Table 2: Statistics of the parallel and monolingual data exploited
for training our German-English systems. For the parallel data,
statistics before and after data selection are reported. Symbols ”M”
and ”K” stand for 106 and 103, respectively.

Table 2 shows the statistics of the German-English data.
The average number of words per sentence in all of the
above corpora is relatively lower on German side than on

5http://www.eu-bridge.eu

the English side. This is largely due to compounding, where
Noun-Verb, Noun-Noun, Adjective-Noun pairs, for example,
are combined together to form a larger compound. Models
trained using raw German text could lead to a high out-of-
vocabulary rate on unseen texts [24]. We leverage a trainable
compound splitter [25], which splits a compound based on
a frequency based metric. We train one compound splitter
model on TED monolingual corpus (German) which contains
3.35M running words and another on the source (German)
side of the TED parallel corpus, which contains 3.2M run-
ning words. The first splitter is aggressive while the sec-
ond model is more passive. Each of the selected corpora
goes through these splitter models resulting in two different
systems for German-English task.
Primary: We select different amount of texts from each
corpus ranging from 10% to 30% of each corpus’ original
size. Aggressive splitting is done on source side (German) of
all training, development and test corpora. As the German-
English language pair shows a high amount of reordering we
have used the hierarchical phrase reordering model as de-
scribed by [26]. Each system has one TM and one RM that
are built on each domain, comprising a total of 5 TMs and
RMs. Linear interpolation as described in Section 4.1.3 is
used to combine the out-of-domain models (CC, EP, UN and
NC), resulting in a single background TM and RM. The TED
TM and RM are then filled-up with the background TM and
RM and a binary provenance feature is added to the TM. An-
other model that we use is a lexically driven 5-gram opera-
tion sequence model (OSM) [27] with a standard feature set.
The OSM model is built on the concatenation of all five par-
allel corpora. As the factored trigger model usually results
in a big phrase table, we use just the TED domain to build
the model. TreeTagger [28] assigns a lemma and POS-tag to
each word which are included as two factors in the factored
trigger model.
Contrastive: The contrastive system is configured similarly
to the Primary system, except that we use the passive splitter
model to split the German compounds.

Evaluation results show that both systems are at par with
one other on 2013 and 2014 test sets. On comparing just the
BLEU scores on both test sets, we see that a passive split-
ter is useful for 2013 test set while an aggressive splitting
is required on the 2014 test set. The factored trigger model
was useful for German-English pair; an offline evaluation on
the development set (tst2010) showed that the primary sys-
tem with the FTM gave a jump of 0.2 BLEU points over the
system where we do not use FTM.

7. English-French SLT task
The sections below describe the steps followed to perform
English-French speech translation. Each of the submitted
translations are drawn from machine translation systems de-
rived from the contrastive-6 MT system (Section 5), which
uses stack decoding. We briefly describe the techniques ap-
plied to normalize and preprocess the ASR outputs to make
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them suitable for translation. We additionally provide a brief
summary of a text normalization technique relying on phone-
mic confusion to synthesize ASR outputs for MT training.
Finally, we describe our experimental results.

7.1. Preprocessing

Prior to translating ASR outputs, we perform the follow-
ing normalization steps to make them compatible with our
phrase-based SMT system.

Similar to the MT track, we tokenize ASR outputs using
the scripts provided by Moses. After tokenization, we recase
the outputs. The recaser system is trained using the Moses
scripts and a 3-gram LM. The recaser model and language
models are trained on a concatenation of TED and WMT
News Commentary data. Finally, we insert punctuation via
monotonic machine translation, similar to the approach of
[29].

7.2. Phoneme-motivated Text Normalization

A SMT system trained only on transcripts and other text data
results yields a search space that is inaccessible by ASR out-
puts that may contain errors and text normalization issues. In
an ideal scenario, we would train our spoken language trans-
lation system on a combination of text corpora and speech
recognition outputs with reference translations; however, a
sufficiently large amount of such speech corpora is not read-
ily available. In order to make our machine translation sys-
tem more tolerant of potential ASR errors, we use a similar
phoneme-motivated text normalization approach as outlined
in our previous year’s submission [30] to generate additional
bilingual training data from the text corpora provided in the
evaluation.

We adapt the MT training data into ASR-like output to
anticipate ASR errors and text normalization issues during
SMT model training. We do this by leveraging several com-
ponents from a target ASR system. In our experiments, we
use the FBK’s Kaldi English ASR system, which was used
in our ASR submission [31]. Similar to [32], we transform
the text corpora into synthetic ASR outputs by first convert-
ing the text corpora into phonemes and then “translating”
each phoneme sequence back into words that more closely
match the output of our ASR system. Following the expo-
sition described in [30], we use the Festival text-to-speech
engine6 to convert each word in our ASR system’s pronunci-
ation lexicon into phoneme sequences. The word to phoneme
sequence mappings are used to generate a phrase table that
translates from phoneme sequences to words. We augment
the word to phoneme sequence mappings with the original
pronunciation entries in the ASR lexicon. We assign uniform
forward and backward phrase probabilities to each phoneme
sequence to word mapping in the phrase table and omit the
lexical probabilities from the model. We use the phrase ta-
ble and the original ASR system’s 4-gram English language

6http://www.cstr.ed.ac.uk/projects/festival

run BLEU TER
pr 25.39 59.53
cn1 25.29 59.64
cn2 25.08 60.15
cn3 24.23 61.63
cn4 24.28 61.65
cn5 24.00 62.02

Table 3: Case-sensitive BLEU and TER results for FBK’s tst2014
submissions to the English-French SLT task.

model [31] as components in a Moses phrase-based SMT
system.

The system is tuned on the tst2010 data set: the reference
transcript is converted to phonemes using the TTS system de-
scribed above. Since our goal is to convert clean transcripts
into synthetic ASR output, it serves as our source text. Our
reference set consists of the 1-best ASR outputs from our
best Kaldi ASR system, which transcribed the audio corre-
sponding to the tst2010 transcripts. Tuning is performed to
optimize BLEU via MERT.

After tuning, we convert all of the out-of-domain text
corpora, aside from Common Crawl, into ASR-like output
using the trained system. Each ASR-like corpus is tokenized
and recased according to the steps described above. The new
damaged corpora are concatenated together and used to train
an English-French phrase table and reordering model, using
the same training pipeline as described in Section 2. After
the phrase table and reordering models are trained, we use
the fill-up technique with the models trained in the MT task
(Section 5).

We additionally train a monotonic phoneme-to-phoneme
phrase-based SMT system to generate additional confusable
pronunciations for each of the lexical entries, using a 4-gram
phoneme language model and the default Moses parameters.
The training is performed in a similar manner as in [32].

7.3. Experiments

We submitted six alternative translations of the ASR out-
puts on tst2014. Our first set of translations (pr, cn1, cn2)
use the 1-best ROVER system combination provided by the
organizers. Our primary system uses all of the techniques
listed above. Our first contrastive system (cn1) omits the
phoneme-to-phoneme pronunciation generation. Our sec-
ond contrastive system (cn2) does not include any synthetic
phrase table entries. Our second set of translations (cn3-5)
use the same sequence of steps as those listed above. Rather
than using the ROVER ASR hypothesis, we use the ASR hy-
pothesis corresponding to FBK’s primary submission in the
English ASR track. Results are shown in Table 3.

In particular, we note an increase of 1 BLEU by us-
ing the ROVER outputs instead of FBK’s primary system.
Additionally, we see an improvement of approximately 0.3
BLEU when using our phoneme-based text normalization
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techniques.
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Abstract
This paper describes the University of Edinburgh’s spo-

ken language translation (SLT) and machine translation (MT)
systems for the IWSLT 2014 evaluation campaign. In the
SLT track, we participated in the German↔English and
English→French tasks. In the MT track, we participated in
the German↔English, English→French, Arabic↔English,
Farsi→English, Hebrew→English, Spanish↔English, and
Portuguese-Brazil↔English tasks.

For our SLT submissions, we experimented with compar-
ing operation sequence models with bilingual neural network
language models. For our MT submissions, we explored us-
ing unsupervised transliteration for languages which have a
different script than English, in particular for Arabic, Farsi,
and Hebrew. We also investigated syntax-based translation
and system combination.

1. Introduction
The University of Edinburgh’s translation engines are based
on the open source Moses toolkit [1]. We set up phrase-based
systems [2] for all SLT and MT tasks covered in this paper,
and additionally a string-to-tree syntax-based system [3, 4]
for the English→German MT task.

The setups for our phrase-based systems have evolved
from the configurations of the engines we built for last year’s
IWSLT [5] and for this year’s Workshop on Statistical Ma-
chine Translation (WMT) [6]. The notable features of these
systems are:

• Phrase translation scores in both directions, smoothed
with Good-Turing discounting

• Lexical translation scores in both directions
• Word and phrase penalties
• Six simple count-based binary features
• Phrase length features
• Distance-based distortion cost
• A hierarchical lexicalized reordering model [7]
• Sparse lexical and domain indicator features [8]
• Operation sequence models (OSMs) over different

word representations [9, 10]
• A 5-gram language model (LM) over words

We typically train factored phrase-based translation mod-
els [11, 12] and also incorporate higher order n-gram LMs
over word representations given by the factors. Factors can
for instance be lemma, part-of-speech (POS) tag, morpholog-
ical tag, or automatically learnt word classes in the manner
of Brown clusters [13].

Edinburgh’s syntax-based systems have recently yielded
state-of-the-art performance on English→German news
translation tasks [14, 15] but have not been applied in an
IWSLT-style setting before. Standard features of our string-
to-tree syntax-based systems are:

• Rule translation scores in both directions, smoothed
with Good-Turing discounting

• Lexical translation scores in both directions
• Word and rule penalties
• A rule rareness penalty
• The monolingual PCFG probability of the tree frag-

ment from which the rule was extracted
• A 5-gram LM over words

For our Spanish↔English and Portuguese-
Brazil↔English submissions, we ran the engines as
described in last year’s system description paper [5]. In the
following, we focus on describing the new systems which
were developed for the rest of the tasks.

Our this year’s IWSLT systems were trained using mono-
lingual and parallel data from WIT3 [16], Europarl [17],
MultiUN [18], the Gigaword corpora as provided by the Lin-
guistic Data Consortium [19], the German Political Speeches
Corpus [20], and the corpora provided for the WMT shared
translation task [21].

Word alignments for the MT track systems were created
by aligning the data in both directions with MGIZA++ [22]
and symmetrizing the two alignments with the grow-diag-
final-and heuristic [23, 2]. Word alignments for the SLT track
systems were created using fast align [24].

The SRILM toolkit [25] was employed to train 5-gram
language models (LMs) with modified Kneser-Ney smooth-
ing [26]. We trained individual LMs on each corpus and then
interpolated them using weights tuned to minimize perplex-
ity on a development set. KenLM [27] was utilized for LM
scoring during decoding. Model weights for the log-linear
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model combination [28] were optimized with batch k-best
MIRA [29] to maximize BLEU [30]. Where not otherwise
stated, the systems were tuned on dev2010.

Besides participating in the evaluation campaign with our
individual engines, we also collaborated with partners from
the EU-BRIDGE project to produce additional joint submis-
sions. The combined systems of the University of Edinburgh,
RWTH Aachen University, Karlsruhe Institute of Technol-
ogy, and Fondazione Bruno Kessler are described in [31].

2. Spoken Language Translation
Edinburgh’s spoken language translation system experiments
set out to compare two recent strands of research in terms
of their performance and their properties in order to under-
stand the contributions of each. The first strand of research
is bilingual neural network langauge models. There has re-
cently been a great deal of interest bilingual neural network
language models as they have shown strong gains in per-
formance for Arabic→English, and to a lesser extent for
Chinese→English [32]. It is still not clear what the exact
contribution of the bilinugal language model is, and there is
reason to believe that its contribution may be that it allows
the SMT model to overcome strong phrase pair independence
assumptions.

The second strand of research is operation sequence mod-
elling [33, 34]. The integration of the OSM model into
phrase-based decoding directly addresses the problem of the
phrasal independence assumption by modelling the context
of phrase pair translations. We aim to compare these two
different approaches and combining them. As we see, com-
bining OSM and the bilingual NN language model slightly
outperforms all other models, including the state-of-the-art
OSM model, but only for English→French and only very
slightly.

2.1. Baseline

For the SLT track, we trained phrase-based models us-
ing Moses with mostly default settings. We further in-
cluded basic sparse features [35] and we used factors.
For German→English we used POS tags, morphological
tags and lemmas as factors in decoding [11], and for
English→German we used POS tags and morphological tags
on the target side. Table 1 lists the factors used for the trans-
lation model, and the factors over which we trained OSM
models.

The SLT and the MT systems were trained in a similar
fashion, with the main difference being that for SLT no pre-
reordering was performed for German→English as this re-
lies on grammatically correct test sentences, and automatic
speech recognition (ASR) output, especially for German, is
difficult to parse correctly. We trained the SLT systems on
the Europarl, WIT3, News Commentary, and Commoncrawl
corpora. The monolingual data contained the target side of
the parallel corpora, the news language model data provided

EN→FR EN→DE DE→EN

Src Factors w,c w,c w,l,p,m
Tgt Factors w,c w,p,m,c w,l,p
OSM w,c w,c w,l,p and m→p
No. words ‖ 138M/153M 116M/110M 110M/116M
No. words mono 2673M 2214M 6600M

Table 1: SLT track: Factors used by translation models and
OSM models (words w, clusters c, lemma l, pos p, morphol-
ogy m) and the size of the parallel and monolingual training
data in millions of words.

for WMT, and the LDC Gigaword for French and English.
The number of words of training data can be seen in Table 1.

2.2. Monolingual Punctuation Models

One of the main challenges of spoken language translation
is to overcome the mismatch in the style of data that the
speech recognition systems output, and the written text that
is used to train the translation model. ASR system output
lacks punctuation and capitalisation and this is one of the
main stylistic differences. Previous research [36, 5] suggests
that it is preferrable to punctuate the text before translation,
which is what we did by training a monolingual translation
system for our two source languages: German and English.
The “source language” of the punctuation model has punc-
tuation and capitalisation stripped, and the “target language”
is the full original written text. Our handling of punctua-
tion uses a phrase-based translation model with no distor-
tion or reordering, and we tuned the model to the ASR input
text (dev2010 for English, and dev2012 for German) using
batch MIRA and the BLEU score. After running ASR out-
put through the punctuation model, it is then translated with
a standard machine translation model, trained directly on the
parallel written text, in a very similar fashion to the MT sys-
tem, except that for our official submission we tuned the MT
model to the ASR tuning set.

2.3. Operation Sequence Model

We investigated applying a number of OSM models [33, 34]
to the basic phrase-based translation model. OSM addresses
the problem of the phrasal independence assumption since
the model considers context beyond phrasal boundaries. The
OSM model represents a bilingual sentence pair and its align-
ment through a sequence of operations that generate the
aligned sentence pair. An operation either generates source
and target words or it performs reordering by inserting gaps
and jumping forward and backward. It has shown to improve
performance over many language pairs, and to help even
more when sequence models are applied over more general
factors such as POS tags and GIZA++’s mkcls clusters [5].
For this experiment we applied the best OSM settings from
last year’s IWSLT experiments which included models over
words, lemmas, POS tags, and clusters depending on the lan-
guage pair. See Table 1 for details.
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2.4. Bilingual Neural Network Language Model

There has recently been a great deal of interest in includ-
ing neural networks in machine translation [37, 38]. There
is hope that neural networks provide a way to relax some of
the more egregious independence assuptions made in trans-
lation models. The challenge with neural networks how-
ever, is that they are computationally very expensive, and
getting them to operate at scale requires sophisticated effi-
ciency techniques. A recent paper which was able to fully
integrate a neural network which includes both source side
and target side context in decoding [32], and they managed
to show big improvements for a small Arabic→English task,
and smaller improvements for a Chinese→English task. We
implemented a bilingual neural network language model in
order to investigate what their benefits are to state-of-the-art
translation models.

We implemented a BiNNLM as a feature function in-
side Moses, following closely the implementation outlined in
[32]. The main focus of our design is to make the Moses spe-
cific code flexible and independent of the neural network lan-
guage model that would be used for scoring. As a result any
NNLM could implement the interface and be used by Moses
during decoding. Some features such as backoff to POS tag
in case of unknown word or use of special < null > token to
pad an incomplete parse in the chart decoder are made op-
tional. Currently the implemented backends are NPLM [39]
and OxLM [40]. Implementation is available for both phrase
based and hierarchical Moses. For our experiments we chose
NPLM to be our NNLM backend. We chose it, because it
features noise contrastive estimation (NCE) which allows us
to avoid having to apply softmax to normalize the outputs,
as it is infeasible to do so with large vocabularies. Another
benefit of NPLM is that when using NCE and a neural net-
work with one hidden layer we can precompute the values
for the first hidden layer of all vocabulary terms, similarly to
what [32] do. We also modified the NPLM code a bit and
used Magma enabled fork of the Eigen library1 to speed up
the training. This results in a decoder which is about twice
as slow as the phrase-based decoder without BiNNLM On
average decoding speed is three sentences per second when
using BiNNLM, which highlights that this implementation is
fast enough to make large experiments possible.

For these experiments we used a target context of four
words, and an aligned source window of nine words. Note
that NPLM does not support separate source and target con-
texts so what we did is use the parallel corpora to extract 14-
grams which consist of 9 source and 5 target words. Once
those 14-grams are extracted we train NPLM on them as if
it were a monolingual dataset. The size of our word embed-
ding layers was 256 for the EN→FR, and 150 for DE→EN
language models. Increasing the size of the embeddings for
DE→EN did not increase performance, but decreasing it for
EN→FR seemed to hurt performance. We used just one hid-

1https://github.com/bravegag/eigenmagma

EN→FR DE→EN

Baseline 35.7 32.5
OSM full 37.3 33.0
BiNNLM 36.7 32.4
OSM + BiNNLM 37.4 32.8

Table 2: Performance comparison of OSM and BiNNLM
(average case-sensitive BLEU score of IWSLT test sets 2010-
2012).

EN→FR DE→EN EN→DE

dev2012 - 21.00 -
dev2010 23.39 - 21.25
test2014 25.50 17.67 17.00

Table 3: Results of submission systems in the SLT track
(case-sensitive BLEU scores).

den layer to allow precomputation and much faster decoding.
We used a source and target vocabulary size of 16k words,
and used a part-of-speech backoff for the less frequent words
for the DE→EN system, and backoff to the UNK token for
EN→FR.

2.5. Results

Looking at Table 2 it seems that both the OSM model and the
BiNNLM model outperform the baseline. The OSM model
is stronger than the BiNNLM when both features are used
separately. However, for the EN→FR task, combining OSM
and BiNNLM outperforms OSM on its own by 0.14 BLEU
points. The baseline translation systems use large amounts
of parallel and monolingual data, and it is not surprising that
our first attempt at using BiNNLM did not resoundingly beat
the previously state-of-the-art OSM models. It is surpris-
ing perhaps that BiNNLM did much better for EN→FR than
DE→EN. This is similar to the Devlin et al. result where
their AR→EN improvements were much stronger than their
ZH→EN results.

From the results here it does seem like the advantages
gained by applying OSM and BiNNLM might overlap, given
that there is not a large improvement seen when combining
the two types of features.

We used the baseline systems trained with OSM models
for our official submission to the IWSLT 2014 evaluation.
We tuned these on the supplied ASR development sets. The
results are shown in Table 3.

3. Machine Translation

This section contains a description of the experiments we car-
ried out for tasks in the MT track of the evaluation campaign.

51

Proceedings of the 11th International Workshop on Spoken Language Translation
Lake Tahoe, December 4th and 5th, 2014



Pair Training tst2010 tst2011 tst2012

- 26.7 26.3 29.8
AR→EN 7.6K 26.8 26.5 29.9
OOV 393 345 442

- 8.8 9.6 9.5
EN→AR 9.1K 8.8 9.7 9.6
OOV 351 277 424

- 15.6 20.7 15.6
FA→EN 5.5K 15.8 21.0 15.8
OOV 337 451 628

- 30.1 31.5 31.7
HE→EN 14K 30.3 31.8 31.9
OOV 837 753 892

Table 4: Effect of unsupervised transliteration models. Train-
ing = extracted transliteration corpus (types). First rows:
system without transliteration. Second rows: transliterating
OOVs. Third rows: number of OOVs (types) in each test.

EN→AR tst2010 tst2011 tst2012

baseline 8.3 8.3 8.7
+ Gigaword + UN 8.9 9.2 9.6

Table 5: Effect of Gigaword and UN monolingual data on
English→Arabic translation quality.

3.1. Unsupervised Transliteration Model

Arabic, Farsi and Hebrew are written in different writing
scripts as English, therefore the conventional method of
copying unknown words to the output is not a good idea.
We built unsupervised transliteration models [41] to translate
OOV words.

The transliteration model is induced using an EM-based
method [42]. We extracted transliteration pairs automat-
ically from the word-aligned parallel data and used it to
learn a transliteration system. We then built transliteration
phrase-tables for translating OOV words and used the post-
decoding method (Method 2 as described in the paper) to
translate these. Table 4 show results from using unsupervised
transliteration models. Small improvements were shown in
all cases. Note that not all the OOVs can be translated cor-
rectly through transliteration. Only a handful of these were
named entities and foreign words that could be transliterated.

3.2. Arabic-English MT

We carried out a number of experiments for the Arabic-
English language pair which we now discuss briefly.

Tokenization. We used MADA tokenizer for source-side
Arabic [43] and tried different segmentation schemes includ-
ing D*, S2 and ATB. The ATB segmentation consistently
outperformed other schemes.

Modified Moore and Lewis Filtering. The in-domain
datasets (TED talk corpus) are small and a large out-of-
domain corpus (UN) is available. We tried to explore various
ways to make best use of the out-of-domain data to improve
the baseline system. We used Modified Moore and Lewis as
known as MML [44] filtering, to subsample training data that
is similar to the in-domain data. We varied the percentage of
bilingual UN data selected between 2%, 5%, 20% and 100%.
Adding any percentage of UN data did not give any gains in
the performance. Using 2% gave best results, however, they
were still below the baseline system.

Backoff Phrase Tables. Instead of using UN data di-
rectly we used it with the backoff phrase-table method. This
allows Moses to use the phrase-table built with the UN data
only when a phrase is unknown to phrase-table trained from
the in-domain data. The backoff order determines the maxi-
mum phrase length for which this operation is allowed. We
used backoff order of 5. Using backoff phrase tables gave
slight improvement in English→Arabic, results stayed con-
stant or dropped in Arabic→English direction.

Class-based Model. We explored the use of automatic
word clusters in phrase-based models [10]. We computed
the clusters with GIZA++’s mkcls [45] on the source and
target side of the parallel training corpus. Clusters are word
classes that are optimized to reduce n-gram perplexity. By
generating a cluster identifier for each output word, we are
able to add an n-gram model over these identifiers as an ad-
ditional scoring function. The inclusion of such an additional
factor is trivial given the factored model implementation [11]
of Moses. The n-gram model is trained in the similar way as
the regular language model. The lexically driven OSM model
falls back to very small context sizes of two to three opera-
tions due to data sparsity. Learning operation sequences over
cluster-ids enables us to learn richer translation and reorder-
ing patterns that can generalize better in sparse data condi-
tions.

Using class-based models, however, did not give any im-
provements for Arabic-English tasks. We also trained OSM
models over cluster-ids. This result contradicts our findings
in last year IWSLT paper [5] where we reported significant
gains using class-based models on many European language
pairs with English as source language.

Monolingual Arabic Data. Unlike parallel data, adding
Gigaword and UN monolingual data in English→Arabic
translation task gave significant improvements. The gains
are shown in Table 5.

3.3. German→English MT

For the German→English MT task system, pre-
reordering [46] and compound splitting [47] were applied
to the German source language side in a preprocessing
step. A factored translation model was employed. Source
side factors are word, lemma, POS tag, and morphological
tag. Target side factors are word, lemma, and POS tag.
Supplementary to the features listed in Section 6, we
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incorporated two additional LMs into the German→English
MT system: a 7-gram LM over POS tags and a 7-gram LM
over lemmas (both trained on WIT3 only). Model weights
were optimized on a concatenation of dev2010 and dev2012.
Table 6 contains the results on the three test sets.

3.4. English→French MT

We submitted outputs of three phrase-based systems for the
English→French MT task: a primary system and two con-
trastive systems (contrastive 1 and contrastive 2). All avail-
able training corpora were utilized, with the exception of
the MultiUN corpus and the WMT 109 French-English cor-
pus, which we excluded from both the parallel and the LM
training data. Our systems comprise Brown clusters with
200 classes as additional factors on source and target side.
Supplementary to the features listed in Section 6, we incor-
porated a 7-gram LM over Brown clusters. Furthermore, a
bilingual neural network language model as described in Sec-
tion 2.4 was integrated into the primary and the contrastive 1
system. The primary system was tuned on tst2012, the con-
trastive systems were tuned on dev2010.

The characteristics of the setup denoted as contrastive 1
are thus the same as those of the primary submission. We em-
ployed identical configuration parameters and features, the
only difference between the two systems is the usage of a
different tuning set for the optimization of model weights.
The setup denoted as contrastive 2 is similar to contrastive 1
but does not comprise the bilingual neural network language
model. Experimental results are presented in Table 7.

3.5. English→German MT

For the English→German MT task, we submitted outputs
of a phrase-based system (primary), a syntax-based system
(contrastive 1), and a system combination (contrastive 2).
Table 8 shows their respective performance in terms of BLEU
scores.

Phrase-based System. The primary system is phrase-
based with factored models. Source side factors are word,
POS tag, and Brown cluster (2000 classes). Target side fac-
tors are word, POS tag, Brown cluster (2000 classes), and
morphological tag. The primary system was trained with all
corpora. Additional features of the primary system are: a
5-gram LM over Brown clusters, a 7-gram LM over morpho-
logical tags, and a 7-gram LM over POS tags. Model weights
of the primary system were optimized on a concatenation of
dev2010 and dev2012.

We trained a second, smaller phrase-based system on in-
domain bitexts only (i.e., we restricted the parallel training
data to the WIT3 corpus). We denote this second phrase-
based system as phrase-based in-domain. Individual hy-
potheses from the phrase-based in-domain system have not
been submitted for the evaluation; we merely added them as
auxiliary inputs to our system combination. Additional fea-
tures of the phrase-based in-domain system are: a 5-gram

DE→EN tst2010 tst2011 tst2012

primary 31.6 37.3 31.7

Table 6: Results for the German→English MT task (case-
sensitive BLEU scores).

EN→FR tst2010 tst2011 tst2012

primary 34.4 41.5 44.9
contrastive 1 33.8 40.3 41.4
contrastive 2 33.6 40.2 41.0

Table 7: Results for the English→French MT task (case-
sensitive BLEU scores). The contrastive systems were tuned
on dev2010, the primary system was tuned on tst2012. A
bilingual neural network language model was integrated into
primary and contrastive 1.

EN→DE tst2010 tst2011 tst2012

phrase-based (primary) 24.9 27.8 23.4
phrase-based in-domain 24.1 26.7 22.2
syntax-based (contrastive 1) 24.8 26.5 23.1
syscom (contrastive 2) 26.0 27.8 24.5

Table 8: Results for the English→German MT task (case-
sensitive BLEU scores). The contrastive 2 submission is a
system combination of three systems which was tuned on
tst2012.

LM over Brown clusters and a 7-gram LM over morpholog-
ical tags (the latter trained on WIT3 only). Model weights
of the phrase-based in-domain system were optimized on
dev2010.

Syntax-based System. The contrastive 1 system is a
string-to-tree translation system with similar features as the
ones described in [15]. The target-side data was parsed with
BitPar [48], and right binarization was applied to the parse
trees. The system was adapted to the TED domain by ex-
tracting separate rule tables (from the WIT3 corpus and from
the rest of the parallel data) and merging them with a fill-up
technique [49]. Augmenting the system with non-syntactic
phrases [50] and adding soft source syntactic constraints [51]
yielded further improvements. Model weights of the syntax-
based system were optimized on a concatenation of dev2010
and dev2012.

System Combination. We combined the outputs of the
phrase-based primary system, the auxiliary phrase-based in-
domain system, and the string-to-tree syntax-based system
with the MT system combination approach implemented in
the Jane toolkit [52]. The parameters of the system combi-
nation were optimized on tst2012. The consensus translation
produced by the system combination (syscom) was submit-
ted as contrastive 2.
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4. Summary
The Edinburgh submissions for IWSLT cover many language
pairs and research techniques. We have implemented a bilin-
gual neural network language model feature in Moses and
have demonstrated that it can lead to state-of-the-art results
for English→French. BiNNLM seems less beneficial for
German→English, however. Our experiments further con-
firmed the benefit of using OSM, transliteration and system
combination.
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Abstract

EU-BRIDGE1 is a European research project which is aimed
at developing innovative speech translation technology. One
of the collaborative efforts within EU-BRIDGE is to pro-
duce joint submissions of up to four different partners to the
evaluation campaign at the 2014 International Workshop on
Spoken Language Translation (IWSLT). We submitted com-
bined translations to the German→English spoken language
translation (SLT) track as well as to the German→English,
English→German and English→French machine translation
(MT) tracks. In this paper, we present the techniques which
were applied by the different individual translation systems
of RWTH Aachen University, the University of Edinburgh,
Karlsruhe Institute of Technology, and Fondazione Bruno
Kessler. We then show the combination approach developed
at RWTH Aachen University which combined the individual
systems. The consensus translations yield empirical gains of
up to 2.3 points in BLEU and 1.2 points in TER compared to
the best individual system.

1. Introduction
The EU-BRIDGE project is funded by the European Union
under the Seventh Framework Programme (FP7) and brings
together several project partners who have each previously
been very successful in contributing to advancements in au-
tomatic speech recognition and statistical machine transla-
tion. A number of languages and language pairs (both well-
covered and under-resourced ones) are tackled with auto-
matic speech recognition (ASR) and MT technology with
different use cases in mind. Four of the EU-BRIDGE project
partners are particularly experienced in machine transla-

1http://www.eu-bridge.eu

tion for European language pairs: RWTH Aachen Univer-
sity (RWTH), the University of Edinburgh (UEDIN), Karl-
sruhe Institute of Technology (KIT), and Fondazione Bruno
Kessler (FBK) have all regularly participated in large-scale
evaluation campaigns like IWSLT and WMT in recent years,
thereby demonstrating their ability to continuously enhance
their systems and promoting progress in machine transla-
tion. Machine translation research within EU-BRIDGE has a
strong focus on translation of spoken language. The IWSLT
TED talks task constitutes an interesting framework for em-
pirical testing of some of the systems for spoken language
translation which are developed as part of the project.

In this work, we describe the EU-BRIDGE submissions
to the 2014 IWSLT translation task. This year, we com-
bined several single systems of RWTH, UEDIN, KIT, and
FBK for the German→English SLT, German→English MT,
English→German MT, and English→French MT tasks. Ad-
ditionally to the standard system combination pipeline pre-
sented in [1, 2], we applied a recurrent neural network rescor-
ing step [3] for the English→French MT task. Similar coop-
erative approaches based on system combination have proven
to be valuable for machine translation in previous joint sub-
missions, e.g. [4, 5].

2. RWTH Aachen University

RWTH applied the identical training pipeline and models on
both language pairs: The state-of-the-art phrase-based base-
line systems were augmented with a hierarchical reordering
model, several additional language models (LMs) and max-
imum expected BLEU training for phrasal, lexical and re-
ordering models. Further, RWTH employed rescoring with
novel recurrent neural language and translation models. The
same systems were used for the SLT track, where RWTH ad-
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ditionally performed punctuation prediction on the automatic
transcriptions employing hierarchical phrase-based transla-
tion. Both the phrase-based and the hierarchical decoder
are implemented in RWTH’s publicly available translation
toolkit Jane [6, 7]. The model weights of all systems were
tuned with standard Minimum Error Rate Training [8] on
the provided dev2012 set. RWTH used BLEU as optimiza-
tion objective. For the German→English translation direc-
tion, in a preprocessing step the German source was decom-
pounded [9] and part-of-speech-based long-range verb re-
ordering rules [10] were applied. RWTH’s translation sys-
tems are described in more detail in [11].

Backoff Language Models
Each translation system used three backoff LMs that were
estimated with the KenLM toolkit [12]: A large general do-
main 5-gram LM, an in-domain 5-gram LM and a 7-gram
word class language model (wcLM). All of them used in-
terpolated Kneser-Ney smoothing. For the general domain
LM, RWTH first selected 1

2 of the English Shuffled News,
and 1

4 of the French Shuffled News as well as both the En-
glish and French Gigaword corpora by the cross-entropy dif-
ference criterion described in [13]. The selection was then
concatenated with all available remaining monolingual data
and used to build and unpruned LM. The in-domain language
models were estimated on the TED data only. For the word
class LM, RWTH trained 200 classes on the target side of
the bilingual training data using an in-house tool similar to
mkcls [14]. With these class definitions, RWTH applied
the technique shown in [15] to compute the wcLM on the
same data as the general-domain LM.

Maximum Expected BLEU Training
RWTH applied discriminative training, learning three types
of features under a maximum expected BLEU objective [16].
It was performed on the TED portion of the data, which is
high quality in-domain data of reasonable size. This makes
training feasible while at the same time providing an implicit
domain adaptation effect. Similar to [16], RWTH generated
100-best lists on the training data which were used as train-
ing samples for a gradient based update method. Leave-one-
out [17] was applied to circumvent over-fitting. Here, RWTH
followed an approach similar to [18], where each feature type
was condensed into a single feature for the log-linear model
combination. In the first pass, RWTH trained phrase pair and
phrase-internal word pair features, and in the second pass a
hierarchical reordering model, resulting altogether in an ad-
ditional eight models for log-linear combination.

Recurrent Neural Network Models
All systems applied rescoring on 1000-best lists using recur-
rent language and translation models. The recurrency was
handled with the long short-term memory (LSTM) architec-
ture [19] and RWTH used a class-factored output layer for
increased efficiency as described in [20]. All neural net-
works were trained on the TED portion of the data with
2000 word classes. In addition to the recurrent language

model (RNN-LM), RWTH applied the deep bidirectional
word-based translation model (RNN-BTM) described in [3],
which is capable of taking the full source context into account
for each translation decision.

Spoken Language Translation
For the SLT task, RWTH reintroduced punctuation and case
information before the actual translation similar to [21].
However, RWTH employed a hierarchical phrase-based sys-
tem with a maximum of one nonterminal symbol per rule
in place of a phrase-based system. A punctuation predic-
tion system based on hierarchical translation is able to cap-
ture long-range dependencies between words and punctua-
tion marks and is more robust for unseen word sequences.
The model weights are tuned with standard MERT on 100-
best lists. As optimization criterion RWTH used F2-Score
rather than BLEU or WER. More details can be found in
[22].

Since punctuation predicting and recasing were applied
before the actual translation, the final translation systems
from the MT track could be kept completely unchanged.

3. University of Edinburgh
The UEDIN translation engines [23] are based on the open
source Moses toolkit [24]. UEDIN set up phrase-based sys-
tems for all SLT and MT tasks covered in this paper, and
additionally a string-to-tree syntax-based system [25] for
the English→German MT task. The systems were trained
using monolingual and parallel data from WIT3, Europarl,
MultiUN, the English and French Gigaword corpora as pro-
vided by the Linguistic Data Consortium, the German Po-
litical Speeches Corpus, and the Common Crawl, 109, and
News Commentary corpora from the WMT shared task
training data. Word alignments for the MT track systems
were created by aligning the data in both directions with
MGIZA++ [26] and symmetrizing the two trained align-
ments. Word alignments for the SLT track system were
created using fast align [27]. The SRILM toolkit [28] was
employed to train 5-gram LMs with modified Kneser-Ney
smoothing [29]. UEDIN trained individual LMs on each cor-
pus and then interpolated them using weights tuned to mini-
mize perplexity on a development set.

Common features included in the UEDIN phrase-based
systems are the language model, phrase translation scores
in both directions smoothed with Good-Turing discounting,
lexical translation scores in both directions, word and phrase
penalties, six simple count-based binary features, distance-
based distortion costs, a hierarchical lexicalized reordering
model [30], sparse lexical and domain indicator features [31]
and operation sequence models over different word repre-
sentations [32]. Model weights were optimized with batch
MIRA [33] to maximize BLEU [34].

Spoken Language Translation
One of the main challenges of spoken language translation

is to overcome the mismatch in the style of data that the
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speech recognition systems output, and the written text that
is used to train the translation model. ASR system output
lacks punctuation and capitalization, which is the main stylis-
tic differences. Previous research [35, 21, 36] suggests that it
is preferrable to punctuate the text before translation, which
is what UEDIN did by training a translation system on the
German side of the parallel data. The “source language” of
the system had punctuation and capitalization stripped, and
the “target language” was the standard German parallel text.
The handling of punctuation is similar to the other groups in
this paper, however UEDIN used a phrase-based model with
no distortion or reordering, and tuned the model to the ASR
input text using batch MIRA and the BLEU score.

German→English MT
For the UEDIN German→English MT task system, pre-
reordering [37] and compound splitting [38] were applied
to the German source language side in a preprocessing step.
A factored translation model [39] was employed. Source
side factors are word, lemma, part-of-speech (POS) tag, and
morphological tag. Target side factors are word, lemma,
and POS tag. UEDIN incorporated two additional LMs into
the German→English MT system: a 7-gram LM over POS
tags (trained on WIT3 only) and a 7-gram LM over lemmas
(trained on WIT3 only). Model weights were optimized on a
concatenation of dev2010 and dev2012.

English→French MT
UEDIN contributed two phrase-based systems for the
English→French EU-BRIDGE system combination. Both
comprise Brown clusters with 200 classes as additional fac-
tors on source and target side. The system denoted as
UEDIN-A was trained without the MultiUN and 109 cor-
pora, the system denoted as UEDIN-B was trained with all
corpora. An additional feature incorporated into the systems
is an LM over Brown clusters (UEDIN-A: 7-gram, UEDIN-
B: 5-gram). Model weights were optimized on dev2010.

English→German MT
UEDIN contributed two phrase-based systems (UEDIN-A
and UEDIN-B) and a syntax-based system (UEDIN-C) for
English→German MT.

Phrase-based systems. UEDIN-A and UEDIN-B employ
factored models. Source side factors are word, POS tag, and
Brown cluster (2000 classes). Target side factors are word,
POS tag, Brown cluster (2000 classes), and morphological
tag. UEDIN-A was trained with all corpora, whereas for
UEDIN-B the parallel training data was restricted to the in-
domain WIT3 corpus. Additional features of the systems are:
a 5-gram LM over Brown clusters, a 7-gram LM over mor-
phological tags (UEDIN-A: trained on all data, UEDIN-B:
trained on WIT3 only), and a 7-gram LM over POS tags
(UEDIN-A, not UEDIN-B). Model weights of UEDIN-B
were optimized on dev2010, model weights of UEDIN-A on
a concatenation of dev2010 and dev2012.

Syntax-based system. UEDIN-C is a string-to-tree trans-
lation system with similar features as the ones described

in [40]. The target-side data was parsed with BitPar [41], and
right binarization was applied to the parse trees. The system
was adapted to the TED domain by extracting separate rule
tables (from the WIT3 corpus and from the rest of the par-
allel data) and merging them with a fill-up technique [42].
Augmenting the system with non-syntactic phrases [43] and
adding soft source syntactic constraints [44] yielded further
improvements. Model weights of UEDIN-C were optimized
on a concatenation of dev2010 and dev2012.

4. Karlsruhe Institute of Technology

The KIT translations were generated by an in-house phrase-
based translations system [45]. The models were trained
on the Europarl, News Commentary, WIT3, Common Crawl
corpora for all directions, as well as on the additional mono-
lingual training data. The noisy Crawl corpora were filtered
using an SVM classifier [46]. In addition to the standard pre-
processing, KIT used compound splitting [38] for the Ger-
man text when translating from German. In the SLT task,
KIT first recased the input and added punctuation marks to
the ASR hypotheses. This was done with a monolingual
translation system as shown in [36].

In all translation directions, KIT used a pre-reordering
approach. Different reorderings of the source sentences were
encoded in a word lattice. For the English→French sys-
tem, only short-range rules were used to generate these lat-
tices [47]. Long-range rules [48] and tree-based reordering
rules [49] were used for German→English. The POS tags
needed for these rules were generated by the TreeTagger [50]
and the parse trees by the Stanford Parser [51]. In addi-
tion, for the language pairs involving German KIT applied
the different reorderings of both language pairs using a lex-
icalized reordering model. The phrase tables of the systems
were trained using GIZA++ alignment [52]. KIT adapted the
phrase table to the TED domain using the backoff approach
and by means of candidate selection [53]. In addition to the
phrase table probabilities, KIT modeled the translation pro-
cess by a bilingual language model [54] and a discriminative
word lexicon using source context features [55].

During decoding, KIT used several LMs to adapt the
system to the task and to better model the sentence struc-
ture using a class-based LM. For the German→English task,
KIT used one LM trained on all data, an in-domain LM
trained only on the WIT3 corpus, and one LM trained on 5M
sentences selected using cross-entropy difference [13]. As
classes KIT used the clusters obtained using the mkcls al-
gorithm on the WIT3 corpus. For German↔ English, KIT
used a 9-gram LM with 100 or 1000 clusters and for the
English→French MT task, a cluster-based 4-gram LM was
trained on 500 clusters. For English→German, KIT also
used a 9-gram POS-based LM. The log-linear combination
of all these models was optimized on the provided develop-
ment data using MERT.
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5. Fondazione Bruno Kessler
The FBK system was built upon a standard phrase-based sys-
tem using the Moses toolkit [24], and exploited the huge
amount of parallel English-French and monolingual French
training data provided by the organizers. It featured a sta-
tistical log-linear model including a phrase-based translation
model (TM) and lexicalized phrase-based reordering models
(RM), two French language models (LMs), as well as distor-
tion, word and phrase penalties. Tuning of the system was
performed on dev2010 by optimizing BLEU using Minimum
Error Rate Training [8]. It is worth noticing that all available
development data sets, namely dev2010 and test2010-2012,
were added to the in-domain training data to build the system
actually employed for the 2014 evaluation campaign.

In order to adapt the system on TED specific domain and
genre and to reduce the size of the system, data selection
was carried out on all parallel English-French corpora, us-
ing the whole WIT3 [56] training corpus as in-domain data.
Data selection was performed by means of XenC toolkit [57]
exploiting bilingual cross-entropy difference [58] separately
for each available training corpus except the in-domain WIT3

data. Different amount of texts were selected from each cor-
pora ranging from 2% to 30%, and then concatenating for
building one parallel corpus containing 2.6M sentences for a
total of 57M English and 63M French running words.

Two TMs and two RMs were trained independently on
the parallel in-domain and selected data, using the stan-
dard Moses procedure and MGIZA++ toolkit [26] for word-
alignment; TMs and RMs were combined using the back-off
technique (for both TM and RM), taking WIT3 as primary
component, for a total of 168M phrase pairs. The back-off
table combination is similar to the fill-up technique [42], but
does not add any provenance binary features.

The French side of in-domain and selected data were
also employed to estimate a 2-component mixture language
model [59]. Moreover, a second huge French LM was esti-
mated on all permitted monolingual French data consisting of
∼1.4G running words, as a mixture of 8 components. Both
LMs have order 5 and were smoothed by means of the in-
terpolated Improved Kneser-Ney method [29]; they include
57M and 661M 5-grams, respectively. A full description of
the system can be found in the FBK system paper.

6. System Combination
In this section, we give a brief re-introduction of confusion
network system combination. System combination is used
to produce consensus translations from multiple hypotheses
which are outputs of different translation engines. The con-
sensus translations can be better in terms of translation qual-
ity than any of the individual hypotheses. To combine the
engines of the project partners for the EU-BRIDGE joint se-
tups, we applied a system combination implementation that
has been developed at RWTH Aachen University [1].

In Fig. 1 an overview is illustrated. We first address

the generation of a confusion network (CN) from I input
translations. For that we need a pairwise alignment between
all input hypotheses. This alignment is calculated via ME-
TEOR [60]. The hypotheses are then reordered to match the
word order of a selected skeleton hypothesis. Instead of us-
ing only one of the input hypothesis as skeleton, we gener-
ate I different CNs, each having one of the input systems
as skeleton. The final lattice is the union of all I previous
generated CNs. In Fig. 2 an example confusion network of
I = 4 input translations with one skeleton translation is illus-
trated. Between two adjacent nodes, we always have a choice
between the I different system output words. The confusion
network decoding step involves determining the shortest path
through the network. Each arc is assigned one score which is
a linear model combination (Eq. 1) of M different models.

M

∑
m=1

λmhm (1)

The standard set of models is a word penalty, a 3-gram
language model trained on the input hypotheses, and for each
system one binary voting feature. During decoding the bi-
nary voting feature for system i (1 ≤ i ≤ I) is 1 iff the word is
from system i, otherwise 0. The M different model weights
λm are trained with MERT [8].

the

the
a
a

red

red
blue
green

car
car

cab

train

Figure 2: System A: the red cab ; System B: the red train ;
System C: a blue car ; System D: a green car ; Reference:
the blue car .

7. Results
In this section, we present our experimental results. All re-
ported BLEU [34] and TER [61] scores are case-sensitive
with one reference. All system combination results have
been generated with RWTH’s open source system combina-
tion implementation Jane [1].

German→English SLT
For the German→English SLT task, we combined three dif-
ferent individual systems generated by UEDIN, KIT, and
RWTH. Experimental results are given in Table 1. The fi-
nal system combination yields improvements of 1.5 points
in BLEU and 1.2 points in TER compared to the best single
system (KIT). All single systems as well as the system com-
bination parameters were tuned on dev2012. For this year’s
IWSLT SLT track, dev2012 was the only given test set con-
taining automatic speech recognition output.

German→English MT
Similar to the SLT track, the German→English MT system
combination submission is a combined translation of three
different individual systems by UEDIN, KIT, and RWTH.
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Figure 1: Confusion network decoding structure.

Table 1: Results for the German→English SLT task.

system dev2012
BLEU TER

KIT 20.7 60.5
RWTH 20.8 61.4
UEDIN 20.3 63.0
syscom 22.2 59.3

Table 2: Results for the German→English MT task.

system tst2010 tst2011 tst2012
BLEU TER BLEU TER BLEU TER

KIT 31.5 47.6 37.1 42.5 32.0 47.6
RWTH 31.8 47.2 38.3 41.3 32.0 47.0
UEDIN 31.6 47.6 37.3 42.5 31.7 47.9
syscom 33.3 46.1 39.4 40.6 33.5 46.2

Experimental results are given in Table 2. The system com-
bination parameters have been optimized on test2012. Com-
pared to the best individual system (RWTH), the system
combination improved translation scores by up to 1.5 points
in BLEU and 1.1 points in TER.

English→French MT
For the English→French MT task, we combined five dif-
ferent individual systems. FBK, KIT, and RWTH provided
one individual system output for the system combination.
UEDIN added one advanced contrastive system in addition
to their primary system. Experimental results are given in Ta-
ble 3. The system combination of all five individual systems
yields an improvement of up to 0.6 points in BLEU compared
to the best RWTH individual system output. Using a recur-
rent neural network (RNN) LM to rescore a 1000-best list of
the system combination output, leads to a small translation
improvement of +0.1 in BLEU. The same RNN LM was ap-
plied in the best individual system of RWTH Aachen. The
improvements are only small, as the model is already con-
tained the best individual system.

English→German MT
For the English→German setup, we combined three different
individual system setups of UEDIN with the primary submis-
sion of KIT. Experimental results are given in Table 4. All
system combination parameters are tuned on tst2012. The
EU-BRIDGE submission enhanced the translation quality by
up to 1.4 points in BLEU and 1.2 points in TER compared to
the best individual system.

Table 3: Results for the English→French MT task.

system tst2010 tst2011 tst2012
BLEU TER BLEU TER BLEU TER

FBK 32.8 50.4 39.2 42.6 40.0 41.4
KIT 33.1 48.4 37.3 42.5 39.1 40.2
RWTH 34.5 47.6 41.1 40.1 42.0 38.6
UEDIN-A 33.6 48.5 40.2 40.6 41.0 39.6
UEDIN-B 33.2 49.1 39.1 42.0 40.7 39.8
syscom 35.1 48.5 41.7 41.4 44.0 38.7
+RNN 35.2 48.5 41.7 41.3 44.3 38.5

Table 4: Results for the English→German MT task.

system tst2010 tst2011 tst2012
BLEU TER BLEU TER BLEU TER

KIT 24.5 55.2 27.1 50.5 23.5 56.0
UEDIN-A 24.9 55.5 27.8 50.1 23.4 56.9
UEDIN-B 24.1 55.7 26.7 50.8 22.2 57.3
UEDIN-C 24.8 55.3 26.5 50.5 23.1 56.6
syscom 25.9 54.0 28.1 49.1 24.9 55.0

8. Conclusion
We achieved better translation performance with gains of up
to +2.3 points in BLEU and -1.2 points in TER by combining
the different system hypotheses of up to four partners of the
EU-BRIDGE project. The four research institutes (RWTH
Aachen University, University of Edinburgh, Karlsruhe In-
stitute of Technology, Fondazione Bruno Kessler) are main-
taining different machine translation engines based on differ-
ent approaches. System combination combined all the differ-
ent advancements of all engines together into our final sub-
missions. For English→French we applied a recurrent neu-
ral network language model in an additional rescoring step
which only gives small improvement of +0.1 points in BLEU.

9. Acknowledgements
The research leading to these results has received funding
from the European Union Seventh Framework Programme
(FP7/2007-2013) under grant agreement no 287658.

10. References
[1] M. Freitag, M. Huck, and H. Ney, “Jane: Open Source

Machine Translation System Combination,” in Proc. of
the Conf. of the European Chapter of the Assoc. for
Computational Linguistics (EACL), Gothenburg, Swe-
den, Apr. 2014, pp. 29–32.

[2] E. Matusov, N. Ueffing, and H. Ney, “Computing Con-

61

Proceedings of the 11th International Workshop on Spoken Language Translation
Lake Tahoe, December 4th and 5th, 2014



sensus Translation from Multiple Machine Translation
Systems Using Enhanced Hypotheses Alignment,” in
Proc. of the Conf. of the European Chapter of the
Assoc. for Computational Linguistics (EACL), Trento,
Italy, Apr. 2006, pp. 33–40.

[3] M. Sundermeyer, T. Alkhouli, J. Wuebker, and H. Ney,
“Translation modeling with bidirectional recurrent neu-
ral networks,” in Proc. of the Conf. on Empirical Meth-
ods for Natural Language Processing (EMNLP), Doha,
Qatar, Oct. 2014.

[4] M. Freitag, S. Peitz, J. Wuebker, H. Ney, M. Huck,
R. Sennrich, N. Durrani, M. Nadejde, P. Williams,
P. Koehn, T. Herrmann, E. Cho, and A. Waibel, “EU-
BRIDGE MT: Combined Machine Translation,” in
Proc. of the Workshop on Statistical Machine Trans-
lation (WMT), Baltimore, MD, USA, June 2014, pp.
105–113.

[5] M. Freitag, S. Peitz, J. Wuebker, H. Ney, N. Durrani,
M. Huck, P. Koehn, T.-L. Ha, J. Niehues, M. Me-
diani, T. Herrmann, A. Waibel, N. Bertoldi, M. Cet-
tolo, and M. Federico, “EU-BRIDGE MT: Text Trans-
lation of Talks in the EU-BRIDGE Project,” in Proc. of
the Int. Workshop on Spoken Language Translation
(IWSLT), Heidelberg, Germany, Dec. 2013, pp. 128–
135.

[6] D. Vilar, D. Stein, M. Huck, and H. Ney, “Jane: Open
source hierarchical translation, extended with reorder-
ing and lexicon models,” in ACL 2010 Joint Fifth Work-
shop on Statistical Machine Translation and Metrics
MATR, Uppsala, Sweden, July 2010, pp. 262–270.

[7] J. Wuebker, M. Huck, S. Peitz, M. Nuhn, M. Freitag,
J.-T. Peter, S. Mansour, and H. Ney, “Jane 2: Open
Source Phrase-based and Hierarchical Statistical Ma-
chine Translation,” in COLING ’12: The 24th Int. Conf.
on Computational Linguistics, Mumbai, India, Dec.
2012, pp. 483–491.

[8] F. J. Och, “Minimum Error Rate Training in Statisti-
cal Machine Translation,” in Proc. of the Annual Meet-
ing of the Assoc. for Computational Linguistics (ACL),
Sapporo, Japan, July 2003, pp. 160–167.

[9] P. Koehn and K. Knight, “Empirical Methods for Com-
pound Splitting,” in Proceedings of European Chapter
of the ACL (EACL 2009), 2003, pp. 187–194.
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Abstract
This report summarizes the MITLL-AFRL MT and

ASR systems and the experiments run using them dur-
ing the 2014 IWSLT evaluation campaign. Our MT
system is much improved over last year, owing to in-
tegration of techniques such as PRO and DREM op-
timization, factored language models, neural network
joint model rescoring, multiple phrase tables, and devel-
opment set creation. We focused our eforts this year on
the tasks of translating from Arabic, Russian, Chinese,
and Farsi into English, as well as translating from En-
glish to French. ASR performance also improved, partly
due to increased eforts with deep neural networks for
hybrid and tandem systems. Work focused on both the
English and Italian ASR tasks.

1. Introduction
During the evaluation campaign for the 2014 Inter-
national Workshop on Spoken Language Translation
(IWSLT’14) [1] our experimental eforts in machine
translation (MT) centered on 1) decoding with factored
language models [2], 2) neural network joint model [3]
rescoring, 3) multiple phrase tables, and 4) development
set creation. Other algorithms in our toolbox included
the recurrent neural network language model [4], and
the operational sequence models [5].

Experimental eforts for the automatic speech recog-
nition (ASR) task focused on the use of deep neural net-
works for use in both hybrid and tandem conigurations.
Updated language models also improved performance
compared to our 2013 system.

†This work is sponsored by the Air Force Research Labora-
tory under Air Force contract FA8721-05-C-0002. Opinions, in-
terpretations, conclusions and recommendations are those of the
authors and are not necessarily endorsed by the United States
Government.

We here describe improvements over our 2013 sub-
mission systems. For a more in-depth description of the
2013 system, refer to [6]. This paper is structured as fol-
lows. Section 2 presents our work on the MT task, and
discusses each of the techniques mentioned above, end-
ing with a discussion of submitted systems. Our work
on the ASR task is discussed in Section 3.

2. Machine Translation
2.1. Data usage

Unless otherwise noted, data described in this section
originates from the WMT14 website1. We used the in-
domain data supplied by WIT3 [7] for all language pairs.
In English-French, our parallel data included the 109

corpus, News Commentary v8, Europarl v7, and the
UN corpus. In Russian to English, we used the Yandex
corpus2, Common Crawl, Wiki Headlines, News Crawl,
and UN data. In Arabic to English, we used only the
UN data, which was sentence-aligned via Champollion
[8].

Extra monolingual data (in addition to parallel data)
included the News Crawl corpus 2007-2011 (English and
French), LDC Gigaword English v5 [9], and LDC French
Gigaword v3 [10].

2.2. Data Preprocessing and Cleanup

The TED datasets were examined for repetition errors,
in which English sentences or sentence-internal phrases
are translated multiple times. These errors derive from
the TED website. When repetition errors occur in train-
ing data, they cause alignment problems; when they oc-
cur in test data, they degrade the machine translation.

1http://www.statmt.org/wmt14/translation-task.html
2https://translate.yandex.ru/corpus?lang=en

65

Proceedings of the 11th International Workshop on Spoken Language Translation
Lake Tahoe, December 4th and 5th, 2014



Repeated phrases of more than 10 words were detected
and removed. If parallel text was available, phrases were
only removed when there was no corresponding repeti-
tion in the English sentence. The Farsi test sets con-
tained substantial repetition; lesser amounts were found
in the Chinese dev and test data, and in the French dev
data. Arabic and Russian dev and test sets were also ex-
amined, but did not contain these repetitions. Remov-
ing the repetitions from the Farsi tst2014 ile improved
BLEU +1.53, based on last year’s IWSLT system. We
expect to see some improvement for Chinese as well, but
due to time constraints defer that comparison to future
work. Repeat statistics for the dev and test sets are
outlined in Table 1, and for the train sets in Table 2.

Lang. Set Repeats Length
French dev2010 11 887

Chinese
dev2010 87 887
tst2010 81 1570
tst2014 13 1068

Farsi

tst2010 1 885
tst2011 22 1132
tst2012 343 1375
tst2013 187 923
tst2014 53 1131

Table 1: Repeated sentences per dev/test set

Lang. Year Repeats Length

Arabic 2013 3 155,047
2014 5 186,467

Chinese 2014 550 177,901

Farsi 2013 5,749 81,872
2014 8,987 112,704

French 2013 173 162,681
2014 373 186,510

Russian 2013 109 135,669
2014 145 185,205

Table 2: Repeated sentences per training set

2.3. Baseline MT System

Our system implements a fairly standard phrase-based
SMT [11] architecture. It consists of the following:

• Training corpora iltered for maximum sentence
length of 40.

• MADAMIRA Beta 1.0 [12] tokenization for Ara-
bic, Stanford Segmenter [13] + character segmen-
tation for Chinese, Moses tokenizer for Russian
and English.

• GIZA++ word alignments, using 100 word classes,
Models 2-4 + HMM and optionally Model 5.

• Order 6 TED language model.
• Maximum extracted phrase length of 9.

• Monotone-at-punctuation, drop-unknown.
• Phrasetable with KN smoothing [14].
• Word-based [15] or hierarchical [16] monotone-

swap-distort lexical reordering.
• Moses decoder [17], no reordering over punctua-

tion, n-best list size 200.
• Rescore n-best-lists using order-7 class-based TED

LM. Default is 80 word classes.
• Pairwise rank optimization [18] or Derivative-Free

Robust Error Minimization (DREM) [6] over cu-
mulative n-best lists.

• One-best result (we saw no consistent beneit to
using Minimum Bayes Risk).

In addition to the tokenizers listed above, in English-
French and the English component of the Arabic task,
we used simple in-house tokenizers that separate out
punctuation and common language speciic construc-
tions (e.g. l’ in French). Reported scores are case-
sensitive BLEU scores with separated punctuation (via
MTEval3). To account for variance, unless otherwise
stated, scores are averages over 10 optimizations. Base-
line systems are tuned on dev2010.

2.3.1. Language Modeling

Language models on in-domain or target-side parallel
data were trained using either MITLM [19] or SRILM
1.7 [20]. With the Gigaword dataset, we typically used
lmplz [21]. All LMs were binarized using KenLM [22].
Word classes were trained using mkcls [23].

2.4. Additional Phrase Table Training

The use of extra phrase table training data was indis-
pensible in the English to French and Russian to En-
glish tasks. For each of these, we used Moore-Lewis [24]
cross-entropy iltering cE) and kept 10% of the out-of-
domain data. We also experimented with a 2nd phrase
table in Arabic to English and Russian to English using
the MultiUN and Yandex datasets, respectively. These
were tested in addition to a cross-entropy iltered PT.

Lang. Baseline cE PT + 2nd PT +Backof PT
en-fr 38.25† 41.39† – –
ar-en 30.94 31.55 31.53 30.66
ru-en 21.13 22.47 22.15 21.25

Table 3: Comparison of mean BLEU on tst2013 with
additional PT training. (†=tst2012)

2.5. Neural Network Joint Model

We replicated the architecture described in Devlin et al.
Neural Network Joint Model [3], which is similar to a

3http://www.itl.nist.gov/iad/mig/tests/mt/2009/
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continuous space language model, but conditioned on
words in the source language as well. Each target side
word is considered to be “ailiated” with a source word
(via word alignments included in the phrase table). The
ailiated word, the 5 words before and after it, and a 3-
gram on the target side are input to the neural network;
the outputs are posterior probabilities over the entire
target language vocabulary.

We implemented this to rescore 200-best lists. Our
results were promising; we saw modest gains on a variety
of language pairs. Devlin et al. claim gains more than
double when this is integrated into the decoder itself.
This is future work for us.

We implemented the NNJM within Theano [25], and
ran training and rescoring on a Tesla K40 GPU. We
trained a vocabulary by taking words seen in TED 4
or more times. Additional words in the phrase table
(such as from out-of-domain data) were mapped to word
classes using mkcls. Training was done on the output
of grow-diag-inal-and alignments. In the case where
out-of-domain data was available and useful, we irst
trained the network on only the out-of-domain data,
then switched to in-domain data only. In building the
phrase table, sub-phrase alignments for a given phrase
pair were taken from the extracted phrase pair with
maximum scoring lexical p(f |e).

Lang. RNNLM NNJM-In Out+In
ar-en 30.59 30.87 30.88
en-fr 40.85 39.75 41.39
ru-en 20.81 21.21 21.27

Table 4: Efects of neural joint model rescoring, mean
BLEU over tst2012

2.6. Factored Models

Following the success of Edinburgh’s Target Sequence
Model [2] (and our own rescoring n-best lists via mkcls),
we enabled factored language models within Moses. In
theory this should be better than rescoring, because it
will alter the search space the decoder traverses. For
class-based LMs, we compared mkcls to Percy Liang’s
brown-cluster4. We saw that the optimal number of
word classes varied, but once tuned, BLEU varied only
0.2% on ru-en. All numbers reported here use mkcls.

Lang. Baseline 50 200 600 1000
ar-en 29.61 29.70 29.58 29.70 29.71
fa-en 16.68 16.26 16.54 16.62 16.87
ru-en 18.75 19.03 19.32 19.45 19.16
zh-en 15.06 14.95 14.64 14.80 15.00

Table 5: nClasses with factored LMs, tst2013.
4 https://github.com/percyliang/brown-cluster

We saw further gains of 0.41, 0.37 and 1.2 with ad-
ditional class-based Gigaword LMs in ar-en, fa-en, and
ru-en, respectively. However, the results for zh-en were
inconsistently bad. For instance, we saw a gain of 0.29
with 200 classes, a loss of 0.39 with 1000 classes, and
all experiments were worse than the baseline score. Ad-
ditional factored LMs, such as POS tags, were tried in
Russian to English, but produced a loss in performance
of 0.6 BLEU.

We also experimented with the operational sequence
model over word classes. We saw signiicant gain in
English to French using only TED data (+0.69 on
tst2010 using 100 classes), but using the full out-of-
domain data, we did not see the same gains (+0.16).
Translating into English, we saw limited gains, but OSM
with classes reduced std. deviation >1.0 BLEU.

Lang. Baseline 100 250 500 1000
en-fr 41.39 41.56 40.21 – –
zh-en 12.85 12.89 12.76 12.83 12.98

Table 6: nClasses with OSM w/WCs, tst2012 for en-fr,
tst2013 for zh-en.

2.7. Russian Morphological Preprocessing

We used a variation of the Yandex technique for re-
ducing data sparsity [21], stemming nouns and adjec-
tives and inserting a case element as a separate word
before each noun. We used mystem5 to identify lem-
mas and grammatical information; nouns were anno-
tated for number, and adjectives were annotated for
degree. Noun forms that could represent singular or
plural were annotated as singular. For nouns with am-
biguous case, the irst possible case element was selected
from the continuum of nominative, accusative, genitive,
dative, instrumental, ablative. Examples are shown in
Table 7.

Noun Case/Number Output
дням dat-pl DAT день.N+PL
день nom-sg, acc-sg NOM день.N+SG

Table 7: Examples of Yandex-style morphological pro-
cessing

Table 8 shows average BLEU gains over 10 runs by
preprocessing the Russian source data in this way. Max
scores increased less, on average 0.27, while standard
deviation decreased signiicantly. These trends extended
to experiments with extra data, and were exaggerated
with the addition of NNJM rescoring.

5https://api.yandex.ru/mystem/
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System BLEU Gain ∆ Stdev
Baseline 21.13 +0.32 -0.2
+outd 23.29 +0.82 -0.3
+RescoreNNJM 23.56 +1.45 -1.14

Table 8: Mean BLEU scores with Yandex-style prepro-
cessing, tst2013.

2.8. Farsi-English System

Our system this year was a factored phrase-based system
built using supplied in-domain data for the phrase table
with 3 language models built using Gigaword, in-domain
data, and Google-book n-grams. Gains were obtained
by replacing non-printable characters with spaces, utiliz-
ing class-factors with 600 classes, using the cleaned test
sets as described in Section 2.2, and optimizing with a
development set as described in Section 2.9. We selected
the number of sentences for these sets based on the max-
imum Tversky score. Three sets were created, one each
to match tst2013 and tst2014 and one to match
the combination. Non-printing characters were replaced
and repeated phrases (Section 2.2) removed before the
devset selection occurred. Systems were optimized with
PRO using each of these devsets and the best score on
tst2012 of 10 runs was selected as the coniguration
for submission (see Table 9).

Dev Set Length tst2012
Mean Stdev Max

dev2010 885 20.52 0.22 20.16
tst2012 1375 20.48 0.09 20.60

tst2013devsel 931 20.94 0.16 21.23
tst2014devsel 888 21.22 0.10 21.34

tst2014+13devsel 1245 20.99 0.16 21.23

Table 9: Farsi-English system BLEU scores on regular
and Tversky-selected devsets

Based on these results, the system optimized with
tst2014devsel was used to decode tst2013 and
tst2014 for submission.

2.9. Development Set Creation

Following the experiments from last year, as well as
uncertainty in performance via optimizing dev2010 or
tst2011, we implemented a dev set creation mechanism
which extracts the most promising segments from the
available data. We choose to select the dev set based on
maximizing the Tversky similarity measure [26] between
the dev set source segments and the test set source seg-
ments. We employ Tversky similarity with unit weights,
making it equivalent to Jaccard similarity and Tanimoto
similarity: our Tversky score is the number of unique
words in the intersection of the dev and test sets di-

vided by the number of unique words in the union.
We create the dev set via greedy optimization. Start-

ing with an empty dev set, we iteratively add the seg-
ment that provides the largest bang-for-your-buck im-
provement, i.e., the largest increase in Tversky similarity
divided by the number of words in the segment. The re-
sult is a dev set with segments ordered by relationship
to the test set. We can choose a ixed dev set size based
on available resources, a dev set size that maximizes
Tversky similarity, or use another heuristic.

In order to test efectiveness of the Tversky met-
ric, baseline systems were trained using only in-domain
data for Arabic-English, Russian-English, and Chinese-
English language pairs. These systems were then op-
timized using dev2010, tst2012 and Tversky-selected
dev sets of varying length (e.g. tvdev1188 for Arabic
indicating a dev set selected from the irst 1,188 lines of
the selected data). The pool of possible sentence pairs
for the Tversky-selected dev sets is the concatenation of
dev2010, tst2010, tst2011, and tst2012. The length
of these selected sets is set by maximizing the score for
the source-side of tst2014. (It is worth mentioning that
the references play no role in the entire process.) Results
are shown in Table 10.

Lang. dev set avg BLEU max BLEU

ar-en
dev2010 20.42 20.96
tst2012 20.64 20.94

tvdev1188 21.15 21.52

ru-en
dev2010 16.98 17.03
tst2012 16.81 17.03

tvdev2500 17.00 17.13

zh-en
dev2010 12.60 12.90
tst2012 12.33 13.03

tvdev1500 11.30 12.92

Table 10: Results of Baseline systems using standard
and Tversky-score selected dev sets.

2.10. MT Submission Systems

A brief description and results for all of our MT submis-
sion systems can be found in Table 11.

3. ASR
3.1. English ASR

A hybrid Deep Neural Network (DNN)-HMM speech
recognition system was developed on 166 hours of TED
data, 128 hours from the HUB4 corpus [27, 28], and 96
hours from the Euronews corpus provided by the orga-
nizers. This system was trained using the same pro-
cedure as our IWSLT 2013 system [6]. The DNNs in-
cluded 7 hidden layers with 1000 units each and 8000
output units. Compared to our IWSLT 2013 hybrid
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System Description tst2012 tst2013 tst2014
English-to-French

primary cE apw/afp/ted/news LMs, NNJMout+in, OSM o9, opt tvDev1500 42.62
contrast1 primary – tvDev + opt dev2010 41.80

Arabic-to-English
primary 2PTs, hier-msd, nyt+news LM, NNJMin, ted-200 cLM, nyt-600 cLM 30.86 31.80 27.70
contrast1 primary – dev2010 + opt tvDev1200 31.11 31.72 27.39

Chinese-to-English
primary nyt LM, dLimit-8, hier-msd LR, max sent len 32 13.83 15.67 12.90
contrast1 primary + ltw LM + 150 classes GIZA 14.20 15.44 13.25
contrast2 primary + tvDev1500 14.09 15.43 12.92
contrast3 primary + hier-mslr LR 13.28 15.59 12.64

Farsi-to-English
primary PRO, cleaned source data, 600 cLM o7, hiero LR reordering, nyt LM 21.13 19.49 18.45

o7, google book o5, opt tvdev2014
contrast1 primary – tvdev2014 + opt tvdev2013 21.12 19.24 18.56
contrast2 primary – tvdev2014 + opt tvdev2013+2014 21.11 19.14 18.27

Russian-to-English
primary PRO, cE PT, ted LM o7, outd LM o7, giga LM o5, ted+outd cLM o7, 21.30 24.42 19.45

giga nyt cLM o7, yandex parsing, NNJMout+in, opt on dev2010
contrast1 primary – yandex parsing 21.27 24.10 19.08

Table 11: MT Submission Systems.

DNN-HMM system trained on TED, the additional data
yielded a 1.2% Word Error Rate (WER) improvement
on dev2012 prior to LM rescoring, and a 0.4% WER
improvement after LM rescoring.

A bottleneck [29] DNN system for use with a tandem
GMM-HMM [30] was trained using 135 hours of TED
data. The Theano library for Python [25] was leveraged
during DNN training to enable use of the GPU. The i-
nal DNN had 4 hidden layers with 1000 units, plus an
additional bottleneck layer with 60 units placed between
the last two hidden layers. The DNN was trained with
12 Perceptual Linear Prediction features, along with the
zeroth coeicient and irst, second, and third order dif-
ferentials. Features were combined with a frame window
of 13 to give a total input size of 676. Outputs corre-
sponded to 6000 shared states. A minibatch size of 256
and initial learning rate of 0.3 was used for training the
DNN. The “newbob” learning rate schedule as used in
[31] was followed.

A tandem GMM-HMM was trained with the bot-
tleneck features, which were run through PCA. The i-
nal tandem model included approximately 7000 shared
states with 32 Gaussians per state. This sytem did not
perform as well as the hybrid system, but was successful
in system combination.

LM data selection was implemented using the same
procedure as our IWSLT 2012 system [32]. Interpolated
trigram and 4-gram LMs were estimated on TED, 1/8 of
Gigaword, and 1/8 of News 2007–2013 using the SRILM
Toolkit [20].A Recurrent Neural Network (RNN) max-
imum entropy LM was estimated on the same set of

training texts using the RNNLM Toolkit [4]. The net-
work included 160 hidden units, 300 classes in the out-
put layer, 4-gram features for the direct connections,
and a hash size of 109. The LM vocabulary included
100000 words.

In addition to the hybrid DNN-HMM and tandem
systems described above, we also used our IWSLT 2013
HMM acoustic models (AMs) with the updated LMs.
This system was cross adaptated using the initial tran-
scripts from the hybrid DNN-HMM system.

Automatic segmentation of the test data was per-
formed using the same procedure as IWSLT 2013.
Recognition lattices were produced for each system and
then rescored with the interpolated 4-gram LM. Next,
1000-best lists were extracted from each lattice and
rescored with the RNN LM. The inal LM scores were
obtained by linearly interpolating the log probabilities
from the 4-gram and RNN LM. Lastly, system combi-
nation was perfomed using N-best ROVER.

Table 12 shows the WER of each system on dev2012
after evaluating the second pass decoder, rescoring with
the 4-gram LM, and interpolating the 4-gram and RNN
LM scores. Note that the irst pass hybrid DNN-HMM
and tandem systems yielded a 16.7% and 23.1% WER
on dev2012, respectively. N-best ROVER of all three
systems yielded a 12.4% WER.

3.2. Italian ASR

An Italian pronunciation dictionary was manually cre-
ated for the most frequent 28000 words from the Eu-
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System Decode-2 4-gram 4-gram + RNN
DNN-HMM 14.8 14.2 13.3
HMM-2013-AM 15.3 14.6 13.7
Tandem 20.8 20.0 18.3

Table 12: English dev2012 WER. Results are shown
for each system after evaluating the second pass decoder,
rescoring with the 4-gram LM, and interpolating the 4-
gram and RNN LM scores.

ronews corpus. This was done by a member of our
group who speaks Italian as a second language. The
51 phone set included 24 non-geminated consonants, 20
geminated consonants, and 7 vowels. A second pro-
nunciation dictionary with 32 phones was created by
ignoring gemination.6 Lastly, a multilingual (ML) pro-
nunciation dictionary was created from the Italian dic-
tionary that ignored gemination and version 0.7a of the
English CMU pronunciation dictionary. Italian and En-
glish phones were merged when they shared the same
IPA symbol;7 this dictionary included 48 phones.

HMM and hybrid DNN-HMM systems were trained
on the Euronews Italian data set using the same pro-
cedure as the English systems. One HMM system was
trained using the 51 phone set (denoted as HMM-51),
and a second HMM system was trained using the the
32 phone set (denoted as HMM-32). HMM-51 included
6000 shared states with an average of 28 mixtures per
state, and HMM-32 included 4000 shared states with
an average of 24 mixtures per state. The hybrid DNN-
HMM system was developed using HMM-51, and the
DNNs included 3 hidden layers with 1000 units each
and 6000 output units. A inal HMM system (denoted
as HMM-ML) was developed on Euronews Italian and
TED English using the ML pronunciation dictionary;
HMM-ML included 6000 shared states with an average
of 28 mixtures per state.

Interpolated trigram and 4-gram LMs were esti-
mated on the provided TED training data, Google
Books Ngram corpus, and Web 1T 5-gram corpus.
Words from the TED data set were split on apostro-
phes, and N-grams from Google Books were ignored if
the source was published prior to the year 2000. The LM
vocabulary included 100000 words. An RNN maximum
entropy LM was estimated on TED using the RNNLM
Toolkit. The network included 320 hidden units, 300
classes in the output layer, 4-gram features for the di-
rect connections, and a hash size of 109.

Initial segments of the test data were created using
the English neural network SAD. On the dev2014 parti-
tion, it was discovered that the SAD was misclassifying

6Palatal nasal consonants were always geminated in our dictio-
nary.

7The ARPAbet to IPA mappings used in this work are available
at: http://en.wikipedia.org/wiki/Arpabet

non-speech sections as speech on several TEDx talks. To
alleviate this problem, we reprocessed any speech seg-
ment longer than 20 seconds with a second SAD that
was trained on English telephone speech from the Fisher
corpus [33].

Each system was evaluated using HDecode and LM
rescoring was performed using the same procedure de-
scribed in Section 3.1. Cross adaptation was applied to
the HMM systems using the initial transcripts from the
hybrid DNN-HMM system. The inal hypothesis was
selected via N-best ROVER of the DNN-HMM, HMM-
32 and HMM-ML systems. This combination yielded a
29.5% WER on dev2014. Table 13 shows the WER at
each decoding stage; for comparison purposes, we have
included the results obtained without cross adaptation
of the HMM systems.

3.3. ASR Submission Systems

Final submissions on English tst2014 and tst2013 and
Italian tst2014 are shown in Table 14.
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Abstract

This paper describes our German, Italian and English
Speech-to-Text (STT) systems for the 2014 IWSLT TED
ASR track. Our setup uses ROVER and confusion network
combination from various subsystems to achieve a good
overall performance. The individual subsystems are built
by using different front-ends, (e.g., MVDR-MFCC or lMel),
acoustic models (GMM or modular DNN) and phone sets
and by training on various subsets of the training data. De-
coding is performed in two stages, where the GMM systems
are adapted in an unsupervised manner on the combination
of the first stage outputs using VTLN, MLLR, and cMLLR.

The combination setup produces a final hypothesis that
has a significantly lower WER than any of the individual sub-
systems.

1. Introduction
The 2014 International Workshop on Spoken Language
Translation (IWSLT) offers a comprehensive evaluation
campaign on spoken language translation. The evaluation is
organized in different evaluation tracks covering automatic
speech recognition (ASR), machine translation (MT), and
the full-fledged combination of the two of them into speech
translation systems (SLT). The evaluations in the tracks are
conducted on TED Talks (http://www.ted.com/talks), short
5-25min presentations by people from various fields related
in some way to Technology, Entertainment, and Design
(TED) [1].

The goal of the TED ASR track is the automatic tran-
scription of fully unsegmented TED lectures. The quality of
the resulting transcriptions are measured in word error rate
(WER).

In this paper we describe our Italian, German and English
ASR systems with which we participated in the TED ASR
track of the 2014 IWSLT evaluation campaign. While our
German and English ASR systems are based on our previous
years’ evaluation systems [2] our Italian system is a com-
pletely new system that was developed from scratch. Our
general system setup uses multiple complementary subsys-

tems that employ different phone sets, front ends, acoustic
models or data subsets.

The rest of this paper is structured as follows. Section 2
describes the data that our system was trained and tested on.
This is followed by Section 3 which provides a description
of the acoustic front-ends used in our system and Section 4
which describes our segmentation setup. An overview of the
techniques used to build our acoustic models is given in sec-
tion 5. We describe the language model used for this evalua-
tion in section 6. Our decoding strategy and results are then
presented in sections 7 and 8. The final section, Section 8
contains a short conclusion.

2. Data Resources
2.1. Training Data

The following data sources have been used for acoustic
model training of all our English systems:

• 200 hours of Quaero training data from 2010 to 2012.

• 18 hours of various noise data, such as snippets of ap-
plause, music or noises from microphone movement.

• 158 hours of data downloaded from the TED talks
website that was released before the cut-off date of De-
cember 31st 2010.

The Quaero training data is manually transcribed. The
noise data consists only of noises and is tagged with specific
noise words to enable the training of noise models. The TED
data comes with subtitles provided by TED and the TED
translation project.

For German we used the following data sources:

• 180 hours of Quaero training data from 2009 to 2012.

• 24 hours of broadcast news data

• 160 audio from the archive of parliament of the state
of Baden-Württemberg, Germany
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Set #talks #utt dur dur/utt
dev2010 8 887 1.5h 6.2s
dev2012 10 1144 (545) 1.7h (1.8h) 5.4s (12.2s)
tst2010 11 1664 2.5h 5.3s
tst2013 28 1388 4.2h 10.8s
tst2014 15 718 2.2h 11.0s

Table 1: Statistics of the development sets (“dev2010”,
“tst2010” and “dev2012”) and the evaluation sets
(“tst2013” and “tst2014”), including the total number of
talks (#talks), the total number of utterances (#utt), the over-
all speech duration (dur), and average speech duration per
utterance (dur/utt). “tst2013” and “tst2014” have been seg-
mented automatically. Properties of the automatic segmen-
tation of “dev2012” is described in brackets.

The training database for our Italian system contains a to-
tal of 100 hours of audio. It is based on the data from Quaero
Period 4 (54 hours) and Quaero Period 5 (46 hours). The
audio consists of recordings from radio and TV broadcasts.
The data is manually transcribed and split into segments of
varying length, ranging from one sentence to multiple min-
utes. The textual transcriptions contain annotations for dis-
tinct acoustic events as well. We incorporated them as mark-
ers for noises in general and for noises originating from hu-
mans.

Due to the lack of Italian data, we used additional En-
glish data for the neural network training. This data consisted
of 426 hours, based on a selection of TED talks, stanford
lectures, euronews broadcasts and recordings from videolec-
tures.

For language modeling and vocabulary selection, we
used most of the data admissible for the evaluation, as sum-
marized in Tables 2, 3, and 4.

2.2. Test Data

For this year’s evaluation campaign, two evaluation test sets
(“tst2013” and “tst2014”) were provided, as well as three de-
velopment test sets (“dev2010”, “tst2010” and “dev2012”).
The test set “dev2012” has preferably been used for system
development and parameter optimization. Table 1 lists these
five test sets along with relevant properties.

“tst2013” is last year’s evaluation set and is solely com-
prised of TED talks newer than December 2010. This set
serves as a progress test set to measure the system im-
provements with respect to last year’s IWSLT ASR track.
“tst2014” is a collection of TED talks that have been filmed
between early 2012 and late 2013. All development test sets
were used with the original pre-segmentation provided by the
IWSLT organizers. Additionally, “dev2012” has been seg-
mented automatically, as well this year’s evaluation test set.

For the German and Italian systems only a single test
each set “dev2013” and “dev2014“ was available.

3. Feature Extraction

Our systems are built using several different front ends. The
two main input variants, each using a frame shift of 10ms
and a frame size of 32ms, are the mel frequency ceptral co-
efficient (MFCC) minimum variance distortionless response
(MVDR) (M2) features that have been shown to be very ef-
fective when used in BNFs [3] and standard lMEL features
which generally outperform MFCCs when used as inputs to
deep bottleneck features. These standard features are often
augmented by tonal features (T). In [4] we demonstrate, that
the addition of tonal features not only greatly reduces the
WER on tonal languages like Vietnamese and Cantonese but
also results in small gains on non-tonal languages such as
English.

For bootstrapping our systems we employed log Mel fea-
tures with 13 coefficients and a frame size of 16ms. We
stacked the individual frames using a context of seven frames
to each side.

3.1. Deep Bottleneck Features

The use of bottleneck features greatly improves the perfor-
mance of our GMM acoustic models. Figure 1 shows a
general overview of our deep bottleneck features training
setup. 13 frames (+-6 frames ) are stacked as the DBNF input
which consists of 4-5 hidden layers each containing 1200-
1600 units followed by a 42 unit bottleneck, a further 1200-
1600 unit hidden layer and an output layer of 6000 context
dependent phone states for the German systems and 8000 for
the English systems. Layer-wise pretraining with denoising
autoencoders is used for the all the hidden layers prior to the
bottleneck layer. The network is subsequently finetuned as a
whole [5].

The layers following the bottleneck are discarded after
training and the resulting network can then be used to map a
stream of input features to a stream of 42 dimensional bottle-
neck features. Our experiments show it to be helpful to stack
a context of 13 (+-6 ) bottleneck features and perform LDA
on this 630 dimensional stack to reduce its dimension back
to 42.

For Italian, we used an additional approach by training
a neural network using data from more than one language.
We re-used a neural network that has been trained using En-
glish data. In one setting, we used it directly without any
re-training and in another setting, we re-added the discarded
output layers after the bottleneck and re-trained them using
Italian data.

4. Automatic Segmentation

As was the case for last year’s evaluation, the test set for the
ASR track was provided without manual sentence segmen-
tation, thus automatic segmentation of the target data was
mandatory. We utilized three different approaches to auto-
matic segmentation of audio data, which are:
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Figure 1: Overview of our standard DBNF setup.

a) Decoder based segmentation on hypotheses. A fast
decoding pass with one of our development systems was
done to determine speech and non-speech regions as in [6].
Segmentation is then performed by consecutively splitting
segments at the longest non-speech region with a minimal
duration of at least 0.3 seconds. b) GMM based segmen-
tation using speech, non-speech and silence models. This
method uses a Viterbi decoder and MFCC GMM models for
the three aforementioned categories of sounds. The general
framework is based on the one in [7], which was likewise de-
rived from [8]. In contrast to the previous work, we made use
of additional features such as a zero crossing rate. c) SVM
based segmentation using speech and non-speech models,
using the framework introduced in [7]. The pre-processing
makes use of an LDA transformation on DBNF feature vec-
tors after frame stacking to effectively incorporate temporal
information. The SVM classifier is trained with the help of
LIBSVM [9]. A 2-phased post-processing is applied for final
segment generation.

We generated the segmentation of the English data with
the decoder based approach. Our German data was seg-
mented with the help of the SVM based segmentation. The
data for the Italian track was pre-processed using the GMM
framework. The decisions for the respective segmenters have
been made in accordance to previous experiments and suc-
cessful usages within the frame of various projects.

5. Acoustic Modeling
5.1. Data Preprocessing

For the TED data only subtitles were available so the data
had to be segmented prior to training. In order to split the
data into sentence-like chunks, it was decoded by one of our
development systems to discriminate speech and non-speech
and a forced alignment given the subtitles was performed
where only the relevant speech parts detected by the decod-
ing were used. The procedure is the same as the one that has
been applied in [10].

5.2. GMM AM training Setup

All systems use context-dependent quinphones with three
states per phoneme and a left-to-right HMM topology with-
out skip states. The English and Italian acoustic models use
8000 distributions and codebooks derived from decision-tree
based clustering of the states of all possible quinphones. The
German acoustic models use 6000 distributions and code-
books.

The GMM models are trained by using incremental split-
ting of Gaussians training (MAS) [11], followed by optimal
feature space training (OFS) which is a variant of semi-tied
covariance (STC) [12] training using a single global trans-
formation matrix. The model is then refined by one iteration
of Viterbi training. All models further use vocal tract length
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normalization (VTLN).
In order to improve the performance of our acoustic

model Boosted Maximum Mutual Information Estimation
training (BMMIE) [13], a modified form of the Maximum
Mutual Information (MMI) [14], is applied at the end. Lat-
tices for discriminative training use a small unigram lan-
guage model as in [15]. After lattice generation, the BM-
MIE training is applied for three iterations with a boosting
factor of b=0.5. This approach results in about 0.6% WER
improvement for 1st-pass sytems and about 0.4% WER for
2nd-pass systems.

We trained multiple different GMM acoustic models by
combining different front-ends and different phoneme sets.
Section 7 elaborates the details of our system combination.

In contrast to our systems for English and German, we
did not have an existing system for Italian, hence we boot-
strapped our acoustic model using a flatstart training tech-
nique to acquire the initial models.

5.3. Hybrid Acoustic Model

As with the GMM systems we trained our hybrid systems on
variance front-ends and phoneme sets. Our best performing
hybrid systems are based on a modular topology which in-
volves stacking the bottleneck features, described in the pre-
vious section over a window of 13 frames, with 4-5 1600-
2000 unit hidden layers and an output layer containing 6016
context dependent phonestates. The deep bottleneck features
were extracted using an MLP with 5 1600 unit hidden layers
prior to the 42 unit bottleneck layer. Its input was 40 lMel
(or MVDR+MFCC) and 14 tone features stacked over a 13
frame window. Both neural networks were pretrained as de-
noising autoencoders.

5.4. Pronunciation Dictionary

For Italian, we used a pronunciation dictionary which is
based on SAMPA, including consonant geminates and pro-
nunciation variants. It contains 55 phonemes including
noises and consists of the 100k words from the search vo-
cabulary.

For our English systems we used two different phoneme
sets. The first one is based on the CMU dictionary1 and
is the same phoneme set as the one used in last year’s sys-
tem. It consists of 45 phonemes and allophones. The second
phoneme set is derived from the BEEP dictionary2 and con-
tains 44 phonemes and allophones. Both sets use 7 noise tags
and one silence tag each. For the CMU phoneme set we gen-
erated missing pronunciations with the help of FESTIVAL
[16], while for the BEEP dictionary we used Sequitur [17]
instead. Both grapheme to phoneme converters were trained
on subsets of the respective dictionaries.

Our German system uses an initial dictionary based on
the Verbmobil Phoneset [18]. Missing pronunciations are

1http://www.speech.cs.cmu.edu/cgi-bin/cmudict
2ftp://svr-ftp.eng.cam.ac.uk/pub/comp.speech/dictionaries/beep.tar.gz

generated using both Mary [19] and FESTIVAL [16].

5.5. Grapheme System

In addition to systems with a phoneme-based dictionary, we
also built grapheme-based recognition systems for both Ger-
man and Italian. By using a different set of phones, grapheme
based systems are an additional source of information when
doing system combination. Such systems do not require
a pronunciation dictionary, as a 1:1 mapping approach be-
tween letters and sounds is used. Depending on the language,
the resulting system suffers in performance as this naive ap-
proach of letter to sound mapping does not reflect any pro-
nunciation rules.

As the pronunciation of Italian is known to be close to
a 1:1 mapping, the Italian system performed only slightly
worse compared to the phoneme-based system and includ-
ing it into system combination resulted in overall gains. The
German grapheme systems had about a 1% absolute lower
WER than an equivalent phoneme system.

6. Language Models and Search Vocabulary
For language model training and vocabulary selection, we
used the subtitles of TED talks, or translations thereof, and
text data from various sources (see Tables 2, 3, and 4).
Language model training was performed by building sepa-
rate language models for all (sub-)corpora using the SRILM
toolkit [20] with modified Kneser-Ney smoothing. These
were then linearly interpolated, with interpolation weights
tuned using held-out data from the TED corpus. For Italian,
we attempted to compensate for the small amount of data by
using a more elaborate language model with data selected via
Moore’s method [21], but observed no significant improve-
ment in terms of word error rate. For German, we split com-
pounds similarly as in [22].

For the vocabulary selection, we followed an approach
proposed by Venkataraman et al.[23]. We built unigram
language models using Witten-Bell smoothing from all text
sources, and determined unigram probabilities that maxi-
mized the likelihood of a held-out TED data set. As our
vocabulary, we then used the top 150k words for English,
300k words for German, and 100k words for Italian.

7. Decoding Setup
For the evaluation, we built four final systems for Italian.
Three are based on the phoneme dictionary. One is using
a neural network trained entirely on English for feature ex-
traction, one is using a neural network that was pre-trained
on English but fine-tuned on Italian and the last one is using
a feature front-end with just lMEL features. A fourth system
is based on a grapheme dictionary and uses a network that
was trained entirely on English.

Our primary submission is a confusion network combi-
nation (CNC) using all three phoneme-based systems. The
first contrastive system uses the phoneme dictionary and the
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Text corpus # Words
TED 3m
News + News-commentary + -crawl 4,478m
Euronews 780k
Commoncrawl 185m
GIGA 2323m
Europarl + UN + multi-UN 829m
Google Books (1b n-grams)

Table 2: English language modeling data after cleaning. The
total number of words was 7.8 billion, not counting Google
Books.

Text corpus # Words
TED 2,685k
News+Newscrawl 1,500M
Euro Language Newspaper 95,783k
Common Crawl 51,156k
Europarl 49,008k
ECI 14,582k
MultiUN 6,964k
German Political Speeches 5,695k
Callhome 159k
HUB5 20k
Google Web (118m n-grams)

Table 3: German language modeling data after cleaning and
compound splitting. In total, we used 1.7 billion words, not
counting Google Ngrams.

network that was trained using only English data. The sec-
ond contrastive system is based on graphemes and is using
the same neural network. Our third contrastive system is a
ROVER of the two phoneme-based systems using a neural
network and the grapheme-based system using the network
trained on English entirely.

For our English submission we trained 5 different DBNF
GMM acoustic models in total by combining different fea-
ture front-ends (M2 and lMEL) and different phoneme sets
(CMU and BEEP). In addition to these systems, we trained
2 DBNF DNN hybrid systems, one for each phoneme set.
For our primary submission, we combined all 7 systems in a

Text corpus # Words
TED 3,050k
ECI 480k
Euronews 725k
Google Books (437m n-grams)

Table 4: Italian language modeling data after cleaning and
data selection. The total number of words was 4.3 million,
not counting Google Books.

System Dev
lMel+FFV+Pitch EN-NN 38.4
lMel+FFV+Pitch EN-NN Grapheme 38.7
lMel+FFV+Pitch EN-NN IT-ft 40.7
lMel 40.8
ROVER 37.4
CNC 37.1

Table 5: Italian language results on development data
(dev2014)

CNC. The 5 DBNF GMM systems were adapted in an unsu-
pervised manner on the combination of the first stage outputs
using VTLN, MLLR, and cMLLR. A second CNC was com-
puted using the adapted systems and the 2 unadapted hybrid
systems. The final submission consists of a ROVER of both
CNCs, the 5 adapted DBNF GMM systems and the 2 hybrid
systems.

The German setup consisted of 9 separate subsystems 5
with discriminativly trained GMM acoustic models (bmmie)
and 4 using DNN acoustic models (hyb). A confusion net-
work combination is performed on the output of these 9 sys-
tems which is then used to adapt the 5 GMM based acoustic
models for which a 2nd pass speaker adaped pass is then per-
formed. In the 2nd confusion network combination the 2nd
pass systems replace the orginal GMM systems. A ROVER
of the hybrid systems, the 2nd pass GMM system and both
CNCs results in the final output.

8. Results
Our German evaluation setup has improved noticeably since
last year from 18.3% to 17.6% (see Table 7). The best first
pass system now has a WER of 19.2%, an improvement of
0.8% abs. over last year’s best first pass system. The best
2nd pass system has improved by 1.0% abs.

We evaluated our Italian system on the 2014 dev set
(dev2014). Tabel 5 shows the results for different single sys-
tems and ROVER and CNC combinations.

The English system has been evaluated on the test sets
“dev2012”. The results are listed in Table6.

9. Conclusions
In this paper we presented our Italian, English and German
LVCSR systems, with which we participated in the 2014
IWSLT evaluation. All systems make use of neural net-
work based front-ends, HMM/GMM and HMM/DNN based
acoustics models. The decoding set-up of all languages
makes extensive use of system combination of single sys-
tems obtained by combing different phoneme sets, feature
extraction front-ends and acoustic models.

In German we were able to considerably improve the sys-
tem over last year’s system. For Italian we created for the
first time a large scale Italian speech recognition system for

77

Proceedings of the 11th International Workshop on Spoken Language Translation
Lake Tahoe, December 4th and 5th, 2014



System dev2012
M2+T-CMU 15.7
lMEL+T-CMU 15.5
M2+T-16ms-CMU 15.9
M2+T-BEEP 16.0
lMEL+T-BEEP 16.2
lMEL+T-hyb-CMU 15.9
lMEL+T-hyb-BEEP 16.7
CNC-BEEP-01 13.4
M2+T-CMU 14.3
lMEL+T-CMU 14.4
M2+T-16ms-CMU 14.8
M2+T-BEEP 14.6
lMEL+T-BEEP 14.5
CNC-BEEP-02 13.5
ROVER 13.4

Table 6: Results for English on development test sets.

evaluation purposes.
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Abstract

We present the LIA systems for the machine translation
evaluation campaign of the International Workshop on Spo-
ken Language Translation (IWSLT) 2014 for the English-to-
Slovene and English-to-Polish translation tasks. The pro-
posed approach takes into account word context; first, it
maps sentences into a latent Dirichlet allocation (LDA) topic
space, then it chooses from this space words that are themat-
ically and grammatically close to mistranslated words. This
original post-processing approach is compared with a fac-
tored translation system built with MOSES. While this post-
processing method does not allow us to achieve better results
than a state-of-the-art system, this should be an interesting
way to explore, for example by adding this topic space infor-
mation at an early stage in the translation process.

1. Introduction
This paper presents an original post-processing approach to
correct machine translations using a set of topic-based fea-
tures. The proposed method proceeds after the use of fac-
tored phrase-based machine translation (MT) systems [1].
The post-processed systems were submitted at the IWSLT
2014 MT evaluation campaign for two language directions:
English-to-Slovene and English-to-Polish.

The focus and the major contribution of the proposed ap-
proach lie on mapping sentences to a topic space learned
from a latent Dirichlet allocation (LDA) model [2], in or-
der to replace every word identified as mistranslated with a
thematically and grammatically close word. The idea behind
this approach is that during the LDA learning process, the
words contained in each sentence will retain the grammati-
cal structure. Indeed, a topic space is usually learned from
a corpus of documents and each document is considered as
a “bag-of-words”. Thus, the structure of sentences is lost as
opposed to the proposed topic space that is learned from a
corpus of sentences instead. This new topic space takes into
account word distribution into sentences and is able to infer
classes of close words.

In this exploratory study, the topic-based approach is ap-
plied in the context of automatic translations of morpholog-
ically rich languages. Slovene and Polish are both Slavic

languages which are characterized by many inflections for
a great number of words to indicate grammatical differ-
ences. This introduces many forms for a same lemma and
raises many difficulties when translating from morphologi-
cally poor languages such as English. To deal with this prob-
lem in this study, words identified as erroneous are replaced
by the morphological variant form sharing the same lemma
and having the highest LDA score.

We summarize in Section 2 the resources used and the
main characteristics of our systems based on the MOSES
toolkit [3]. Section 3 presents the proposed topic-based ap-
proach to correct mistranslated words. Section 4 reports ex-
periments on the use of factored translation models and the
proposed approach. Finally, conclusions and perspectives are
given in Section 5.

2. MOSES System Based on Factored
Translation Models

2.1. Pre-processing

Systems were only built using data provided for the evalu-
ation campaign, i.e. the WIT and Europarl corpora. Texts
were pre-processed using an in-house script that normalizes
quotes, dashes and spaces. Long sentences or sentences with
many numeric or non-alphanumeric characters were also dis-
carded. Each corpus was truecased, i.e. all words kept their
case, apart from sentence-leading words that may be changed
to their most frequent form (e. g. “Write” becomes “write”
while “Paris” keeps its capital letter). Table 1 summarizes
the used data and introduces designations that we follow in
the remainder of this paper to refer to these corpora.

Slovene and Polish are morphologically rich languages
with nouns, adjectives and verbs inflected for case, num-
ber and gender. This property requires to introduce mor-
phological information inside the MT system to handle the
lack of many inflectional forms inside training corpora. For
this purpose, each corpus was tagged with Part-of-Speech
(PoS) tags and lemmatized using OBELIKS [4] for Slovene1

and TREETAGGER [5] for Polish2. These taggers asso-

1OBELIKS can be downloaded at http://eng.slovenscina.eu/
tehnologije/oznacevalnik.

2TREETAGGER and its parameter file for Polish can be downloaded
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CORPORA DESIGNATION SIZE (SENTENCES)

English-Slovene bilingual training
Web Inventory of Transcribed and Translated Talks WIT 17 k
Europarl v7 Europarl 616 k

English-Slovene development and test
dev2012 dev 1.1 k
tst2012 test0 1.4 k
tst2013 test13 1.1 k
tst2014 test14 0.9 k

English-Polish bilingual training
Web Inventory of Transcribed and Translated Talks WIT 173 k
Europarl v7 Europarl 622 k

English-Polish development and test
dev2010 dev 0.8 k
tst2010 test0 1.6 k
tst2013 test13 1.0 k
tst2014 test14 1.2 k

Table 1: Information on corpora.

ciate each word with a complex PoS including morpholog-
ical information (e.g. “Ncmsan” for “Noun Type=common
Gender=masculine Number=singular Case=accusative Ani-
mate=no”), and also its lemma. A description of the Slovene
and Polish tagsets can be found on the Web3.

In order to simplify the use of the two PoS taggers, we
applied the tokenizer included in the OBELIKS and TREE-
TAGGER tools to process all the corpora.

2.2. Language Models

Kneser-Ney discounted LMs were built from the Slovene
and Polish sides of the bilingual corpora using the SRILM
toolkit [6]. 4-gram LMs were trained for words, 7-gram LMs
for PoS. A LM was built separately on each corpus: WIT and
Europarl. These LMs were combined through linear inter-
polation. Weights were fixed by optimizing the perplexity on
the dev corpus.

2.3. Alignment and Translation Models

All parallel corpora were aligned using MGIZA++ [7]. Our
translation models are phrase-based models (PBMs) built
with MOSES using default settings on a bilingual corpus
made of WIT and Europarl. Weights of LM, phrase table
and lexicalized reordering model scores were optimized on
dev with the MERT algorithm [8].

at http://www.cis.uni-muenchen.de/˜schmid/tools/
TreeTagger.

3See http://nl.ijs.si/spook/msd/html-en/msd-sl.
html for Slovene and http://nkjp.pl/poliqarp/help/ense2.
html for Polish.

2.4. Factored Translation Model

The many inflections for Slovene and Polish are problem-
atic for translation since morphological information, includ-
ing case, gender and number, has to be induced from the En-
glish words. Factored translation models can be used to han-
dle morphology and PoS during translations [1], with various
setups available to use factors in several decoding or genera-
tion steps. In previous experiments conducted on translation
into Russian, another morphologically rich language [9], we
found that translating English words into (Russian words,
PoS) pairs gave the highest improvements. We decided to
apply this setup, which disambiguates translated words ac-
cording to their PoS, for Slovene and Polish.

3. Post-processing Approach Relying on LDA

Classical language models consider words in their context
(n-gram). Nonetheless, all possible contexts cannot be cov-
ered and some n-grams contained in the test corpus may not
appear during the training process of the language model.
For this reason, we propose to learn a topic space using LDA
to associate a word inside a sentence with a set of themati-
cally close words. By thematically, we mean that this word
is associated with the context of the words contained in the
sentence. Indeed, when a topic space is learned from a cor-
pus of documents with usual LDA, words are associated with
a document while grammatical structure is lost. In our case,
this structure is preserved. Figure 1 gives an overview of
the proposed topic-based approach to correct mistranslated
words.

The next sections describe each step of the proposed ap-
proach based on a LDA topic space.
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the eiffel tower has a mass of 7.3 million kilograms

Figure 1: General overview of the proposed post-processing
topic-based correction approach.

3.1. Latent Dirichlet Allocation (LDA)

Previous studies proposed to consider a document as a mix-
ture of latent topics. The developed methods, such as La-
tent Semantic Analysis (LSA) [10, 11], Probabilistic LSA
(PLSA) [12] or Latent Dirichlet Allocation (LDA) [2] build
a high-level representation of a document in a topic space.
Documents are then considered as “bags-of-words” [13]
where the word order is not taken into account.

LDA is presented in its plate notation in Figure 2. These
methods demonstrated their performance on various tasks,
such as sentence [14] or keyword [15] extraction. Contrary
to multinomial mixture models, LDA considers that a topic
is associated with each occurrence of a word composing the
document, rather than with the complete document. Thereby,
a document can switch topic at any given word. Word occur-
rences are connected by a latent variable which controls the

global distribution of topics inside a document. These latent
topics are characterized by words and their corresponding
distribution probability. PLSA and LDA models have been
shown to generally outperform LSA on information retrieval
tasks [16]. Moreover, LDA provides a direct estimate of the
relevance of a topic, given a word set.

The generative process corresponds to the hierarchical
Bayesian model shown in Figure 2. Several techniques, such
as variational methods [2], expectation-propagation [17] or
Gibbs sampling [18], have been proposed to estimate the pa-
rameters describing a LDA hidden space. Gibbs sampling is
a special case of Markov-chain Monte Carlo (MCMC) [19]
and gives a simple algorithm to approximate inference in
high-dimensional models such as LDA [20]. This overcomes
the difficulty to directly and exactly estimate parameters that
maximize the likelihood defined as:

P (W |−→α ,
−→
β ) =

∏

w∈W

P (−→w |−→α ,
−→
β ) (1)

for the whole data collection W given the Dirichlet parame-
ters −→α and

−→
β .

θ z w

α β φ

D
Nd

T

Figure 2: Generative models in plate notation for LDA
model.

LDA estimation through Gibbs sampling was firstly re-
ported in [18]; a more detailed description can be found
in [20]. This method is used both to estimate the LDA param-
eters and to infer an unseen document with a hidden space of
n topics. According to LDA, topic z is drawn from a multi-
nomial over θ which is drawn itself from a Dirichlet distri-
bution (−→α ). In our context, topic space is learned from a
lemmatized corpus where each word is associated with its
lemma. Thus, a sentence can be inferred from a set of (word,
lemma) pairs.

3.2. Topic-based Translation Correction

The first step of the proposed translation correction approach
is to spot words that are likely to be mistranslated. For this
purpose, a confidence score is computed for each word oc-
curring in a sentence s using n-gram probabilities for each
target word computed by the language model. Words with
the smallest scores are assumed to be mistranslated and have
to be corrected. In this paper, we propose to use a LDA topic
space to find out relevant concurrent words w′ to replace
these suspected mistranslated words w. In order to do so,
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Figure 3: Details about the post-processing correction ap-
proach based on a LDA topic space.

Gibbs sampling is used to represent a new sentence s within
the topic space of size n (n = 100 in our experiments) as
shown in Figure 1, and to obtain the topic distribution:

θzj ,s = P (zj |s) . (2)

The next step is to find out a relevant word w′ that should
replace the erroneous one w. Alternate words are searched
among the words having a different inflection but satisfying
the constraint:

lemma(w′) = lemma(w) .

Each topic z is a distribution P (w|z) over the vocabulary.
Thus, a thematic confidence score is estimated for a concur-

rent word w′ by:

δ(w′, s) = P (w′|s)

=
n∑

j=1

P (w′|zj)P (zj |s)

=
n∑

j=1

φw′,zjθzj ,s (3)

where φw′,zj = P (w′|zj) are computed during the training
process of the LDA topic space. Each word w′ contained in
the training corpus is associated with a thematic confidence
score δ. Finally, the hypothesis w′ with the highest score δ is
selected as shown in Figure 3.

4. Experiments

The proposed approach is based on a topic space learned with
the LDA MALLET Java implementation4. This topic space
contains 100 classes and the LDA hyper-parameters are cho-
sen empirically as in [18] (α = 50

100 = 0.5 and β = 0.1).
During the learning process, the MALLET package requires
to lowercase input text. For this reason, the results consid-
ered for the post-processing step are computed on lowercased
sentences.

The effectiveness of the proposed approach is evaluated
in the IWSLT benchmark. Table 2 reports case-sensitive
BLEU and TER scores measured on the test0, test13 and
test14 corpora, with two factored phrase-based TM model
setups: a first one (w → w) where only words are con-
sidered on the source and target sides, and a second one
(w → (w, p)) where English words are translated into (word,
PoS) pairs. Disambiguating words with their PoS by the sec-
ond factored model improves BLEU and TER over the first
model for the three test corpora and both studied language
pairs. For example, an absolute increase of BLEU (between
0.85 and 1.2) is observed for Slovene; a more limited but
still consistent improvement of BLEU (between 0.1 and 0.5)
happens for Polish.

Translation produced by the second TM models were
used as entry of the LDA post-processing step. Table 3 shows
results measured this time in terms of case-insensitive BLEU
and TER, since sentences are lowercased before the post-
processing step. The thresholds to consider a word as mis-
translated from LM-based confidence scores were optimized
in terms of BLEU on test0. These thresholds lead to change
1.2 % of words for Slovene and around 3 % for Polish (Ta-
ble 3, columns 3 and 6). Unfortunately, using the proposed
LDA-based approach did not translate into an observed gain
in terms of BLEU or TER (line 1 vs line 2 and line 3 vs
line 4).

4http://mallet.cs.umass.edu/
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TM MODELS test0 test13 test14
BLEU TER BLEU TER BLEU TER

English → Slovene w → w 12.27 69.58 13.20 67.70 10.92 69.66
w → (w, p) 13.35 68.64 14.05 66.32 12.16 68.59

English → Polish w → w 10.36 77.61 10.78 79.04 9.16 86.68
w → (w, p) 10.45 75.70 11.29 76.59 9.63 83.88

Table 2: Case-sensitive BLEU and TER (in %) measured to evaluate the use of a PoS factor inside the TM model.

TM MODELS test0 test14
BLEU TER % modified words BLEU TER % modified words

English → Slovene w → (w, p) 13.68 67.78 - 12.69 67.90 -
+ post-processing 13.42 68.03 1.16 12.23 68.17 1.29

English → Polish w → (w, p) 11.09 74.20 - 10.12 82.51 -
+ post-processing 10.66 74.95 2.81 9.63 83.39 3.53

Table 3: Case-insensitive BLEU and TER (in %) measured before and after the LDA post-processing step.

5. Conclusions and Perspectives
In this paper, we propose an original post-processing ap-
proach to automatically correct translated texts. Our method
takes advantage of a latent Dirichlet (LDA) model that pro-
vides thematically and grammatically close forms of mis-
translated words. Experiments were conducted in the frame-
work of the IWSLT machine translation evaluation campaign
on the English-to-Polish and English-to-Slovene tasks. The
proposed system was compared to a more classical factored
translation system.

Results showed that the original proposed system does
not improve results obtained with the baseline one, but we
think that this preliminary work should lead to further inves-
tigations in the future. For example, we would like to use
this model at an early stage, during the decoding process of
the MT system, and not only at a post-processing stage. Fur-
thermore, other features than n-gram probabilities should be
exploited to identify mistranslated translations [21]. Finally,
the low results observed with the topic-based correction ap-
proach are obtained with a topic space which still considers
sentences as “bag-of-words” and ignore their internal gram-
matical structure. For this reason, a promising future work is
to embed the position of the word in the sentence or n-gram
containing the word.
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Abstract
The University of Sheffield (USFD) participated in the
International Workshop for Spoken Language Translation
(IWSLT) in 2014. In this paper, we will introduce the
USFD SLT system for IWSLT. Automatic speech recognition
(ASR) is achieved by two multi-pass deep neural network
systems with adaptation and rescoring techniques. Machine
translation (MT) is achieved by a phrase-based system. The
USFD primary system incorporates state-of-the-art ASR and
MT techniques and gives a BLEU score of 23.45 and 14.75
on the English-to-French and English-to-German speech-to-
text translation task with the IWSLT 2014 data. The USFD
contrastive systems explore the integration of ASR and MT
by using a quality estimation system to rescore the ASR out-
puts, optimising towards better translation. This gives a fur-
ther 0.54 and 0.26 BLEU improvement respectively on the
IWSLT 2012 and 2014 evaluation data.

1. Introduction
In this paper, the University of Sheffield (USFD) system for
the International Workshop on Spoken Language Translation
(IWSLT) 2014 is introduced. USFD participated in English-
to-French and English-to-German SLT tasks. The ASR and
MT systems made use of state-of-the-art technologies. On
the ASR side, two deep neural network systems built on par-
tially different data and different tandem configurations were
used. On the MT side, phrase-based translation models were
built. ASR and MT system integration attempts were made
by using a translation quality estimation system. It consid-
ered the system scores from both ASR and MT, as well as
features extracted from the ASR outputs in source language.
The ASR hypotheses were then rescored based on the pre-
dicted translation quality. This gives performance improve-
ments in terms of BLEU score increase.

In the following, the data used for system training is in-
troduced in §2. §3 and §4 give the details of the ASR and
MT systems. The decoding algorithm and system results are
given in §5. Besides the primary submission, USFD also
submitted contrastive systems which implement system in-
tegration. These systems used a quality estimation module
and performed ASR N -best list rescoring based on predicted
translation quality. This would be described in §6.

2. Data processing and selection
The ASR and MT systems were primarily trained on TED
lecture data [1]. For ASR, TED and the additional data form
two data subsets, on which two systems were trained. For
MT, out-of-domain data after data selection were incorpo-
rated in the training of translation models and target language
models.

2.1. ASR acoustic modelling

Two data sets were used for ASR system training. For the
ease of discussion they are hereinafter referred to as ASR1

and ASR2. The composition of the two data sets is shown in
Table 1.

Table 1: Data for acoustic model training
ASR1 ASR2

Data Hours Data Hours
TED 132 TED 112
LLC 106 AMI+AMIDA+ICSI 165
ECRN 60 ECRN 60

TED serves as a common data set in both ASR1 and
ASR2. Their segmentations in ASR1 and ASR2 differ
slightly and this is explained later. The two data sets are aug-
mented by e-corner lecture data (ECRN) with a duration of
60 hours [2]. ASR1 also contains 106 hours of LLC lecture
data. In ASR2, 165 hours of meeting data from the AMI,
AMIDA and ICSI corpora are added so the trained model
will reflect also generic domains other than lectures [3, 4].

The TED portions in both ASR1 and ASR2 originate
from 734 TED talks published before 31 Dec 2010. Each
talk has a duration of around 15 minutes. Human annota-
tions in the form of subtitles are also available, giving rough
segmentation with segment duration from 3 to 5 seconds and
time accuracy to the nearest second.

Exact segmentations and transcriptions of TED were de-
rived in different ways in ASR1 and ASR2. In ASR1, all seg-
ments from the same talk were merged and the speech was
forced aligned, resegmented before another forced alignment
run determined the final training set. This gave a total of 132
hours of speech for AM training. In ASR2, forced alignment
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Table 2: Amount of text data used in different training tasks
in En→Fr translation (#Full data set was used for builing target LM)

Number of words/million
Data Target LM# Source LM Punct TM TM

TED 3.17 3.17 3.17 3.17
News Commentary 4.0 0.9 0.2 0.7
Common crawl 70.7 36.1 3.6 10.8
Gigaword 575.7 271.2 26.3 14.9
Europarl 50.3 10.8 4.3 1.9

was performed on the rough segmentation, after which con-
tagious segments were merged when there was tight silence
at the segment boundaries. A further run of forced alignment
determined the final training set. This gave a total of 112
hours of speech.

To evaluate the performance of different segmentations,
PLP-based state-tied triphone models with cepstral mean and
variance normalisation were trained on these data and decod-
ing was performed on the IWSLT 2010 evaluation data set.
The WERs for the ASR1 and ASR2 settings are 25.7% and
26.2% respectively. When the models are trained directly
on the roughly segmented data (no adjustment of segmenta-
tions), the total duration of training data is 109 hours and the
corresponding WER is 28.1%.

2.2. Language models and MT

Textual data for the training of language models and transla-
tion models were obtained from the affiliated websites of the
IWSLT and WMT evaluations [5, 6]. TED was considered
as the in-domain training data and the full data set was used.
Four out-of-domain (OOD) data sets from News commen-
tary v9, Common Crawl, Gigaword and Europarl v7 were
also used, after a data selection process.

The OOD corpora were selected with the cross en-
tropy difference criterion [7]. Given a sentence xI

1 =
[x1 · · ·xI ] with I words, cross entropy values H(xI

1, ID)
and H(xI

1, OOD) were computed using GID, the ID lan-
guage model (in this case, TED) and GOOD, the OOD lan-
guage model (built on the corpus from which the sentence
was taken). The cross entropy difference (CED) was given
by,

CED(xI
1) = H(xI

1,GID)−H(xI
1,GOOD) (1)

Sentences were ranked by the CED values and 25% of the
sentences with the lowest CED values were selected from
each corpus. Furthermore, CED values were calculated on
sentence batches with increasing sizes. A line search was
done to find the optimal batch giving the minimum CED
value. All data selection was done on the English text. For
data selection to translation model training, the correspond-
ing sentences in the target languages were extracted after se-
lection was done on English sentences.

Table 2 shows the amount of the full text data set, and the

selected text data in different systems in the English→French
translation task. The full data set contains 703.9M words.
They were used for training the target language model in
MT, which was a 5-gram interpolated LM with punctuation
and out-of-vocabulary word modelling, modified Kneser-
Ney smoothing and was in standard ARPA format. The
source language model for ASR was built on the full TED
data set and 25% or 50% of the OOD data, making up to
322.2M words. A monolingual translation model was trained
for punctuation insertion and case conversion. The training
took the full TED data and 5-10% of the OOD data, result-
ing in a total of 37.6M words. The translation model was
trained on the full TED data set and other optimally selected
OOD data sets, where only around 5% of the sentences were
selected. The total number of words is 31.7M.

3. Automatic speech recognition
There are two DNN systems with tandem configurations in
ASR [8]. Bottleneck (BN) features were derived from deep
neural network (DNN)s [4], and GMM-HMM systems were
trained on these bottleneck features. The two tandem sys-
tems were trained on ASR1 and ASR2 data respectively (Ta-
ble 1). Different portions of data were used in different stages
of training. Let DNN1 and DNN2 denote the two DNN sys-
tems for ASR1 and ASR2. DNN1 was trained on TED data
only. DNN2 was trained on TED and AMI+AMIDA+ICSI
data only. The remaining data listed in Table 1 were added
to the training pool in the GMM-HMM training stage.

DNN1 has 4 hidden layers, each having 1,745 hidden
units. The BN layer is placed just before the output layer
and has 26 units. The output layer has 4,320 units. DNN2

has 5 hidden layers, with the first 3 layers having 1,745 units
and the fourth hidden layer having 65 units. A BN layer is
placed just before the output layer and has 39 units. The out-
put layer has 5,691 units.

Both the DNNs were trained using log filter-bank outputs
and concatenating 31 adjacent frames, which were decorre-
lated using DCT to form a 368-dimensional feature vector.
The filter-bank outputs were mean and variance normalised
at the speaker level. Global mean and variance normalisation
was performed on each dimension before feeding the input
for training the DNN. The GMM-HMM systems trained us-
ing the BN features were different. The model for ASR1 was
trained on the concatenated features with the 26-dimension
BN features from DNN1 and the 39-dimension PLP features.
The model for ASR2 was trained on the 39-dimension BN
features from DNN2. Both the GMM-HMM models were
trained as tied-state triphone systems with the final models
having 16 mixture Gaussians per state.

All systems are vocal tract length normalised (VTLN). In
the training stage, a PLP system was used to obtain the warp
factors for each speaker. Then the filter-bank and PLP fea-
tures were VTLN-warped, which were in turn used for DNN
and GMM-HMM training in the tandem configuration. In the
decoding stage, a non-VTLN DNN and GMM-HMM tandem
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Figure 1: System diagram for multi-pass ASR decoding.

system trained on ASR2 data replaced the PLP system for the
derivation of warp factors.

To improve the performance of the acoustic model, mini-
mum phone error (MPE) training was performed using the
lattices which were generated using a uni-gram language
model [9].

Language models for ASR are all interpolated LMs built
on the English text data described in Table 2 and tuned
on IWSLT 2010 dev and eval data. 2-gram and 4-gram
ARPA language models were trained for lattice generation
and expansion. The 4-gram LM was pruned with a threshold
10−10 and a weighted-finite-state transducer (WFST) was
constructed for fast decoding in the pre-final passes in the
ASR systems.

All ASR LMs were based on a word-list with a 60k word
vocabulary extracted based on our standard English ASR in-
ventory and the English part of the TED MT training data for
IWSLT 2014 [3, 5]. Pilot ASR experiments on the IWSLT
2011 and 2012 eval data show the drop of perplexity with
the addition of Common crawl and Gigaword data. For these
two corpora, the rate of data selected for LM building was
set to 50%, while the rate for other OOD corpora was kept
25%. This made the total number of words 322.2M as shown
in Table 2.

Pronunciation probabilities were incorporated in final
stage decoding [10]. These probabilities were extracted
based on the Viterbi alignment of the phoneme level tran-
scription of the ASR1 training data. When a word allowed
multiple pronunciations, the frequency of each pronunciation
was calculated and stored. These frequencies were then ap-
plied to the words in the decoding dictionary for words that
appeared in both training and decoding stages. Words with
multiple pronunciations appearing only in the decoding stage
were given equal probability.

4. Machine translation
A phrase-based model using MOSES [11] in a standard set-
ting was employed. For phrase extraction all of the TED data
(3.17 million words) was used. Following previous findings
[12], data selection via a cross-entropy difference criterion
(detailed in §2.2) was used to select the optimal batch of

the OOD data, which amounts to about 5% of the total data
or 30.58M words. The phrase length was limited to 5 and
word-alignment was obtained with FASTALIGN [13]. Lexi-
calised reordering models were trained using the same data.
For language modelling, we used the complete sets of OOD
data (i.e. no data selection). 5-gram LMs were trained us-
ing LMPLZ [14]. 100-best MIRA tuning was employed [15].
For the English-to-French system, tuning was done on the
IWSLT 2010 development and evaluation data with a total
of 2,551 sentences. For the English-to-German system, tun-
ing was done on the IWSLT 2010 development data with 887
sentences.

In SLT, the input to the MT system was ASR output,
which typically lacks casing and punctuation. Following pre-
vious work [16, 17], a monolingual translation system was
trained to recover casing and punctuation from the ASR out-
put, thus producing source sentences which are more ade-
quate for translation. The training data for this monolingual
MT system was obtained by pre-processing an actual corpus
of the source language to form pseudo ASR outputs, which
contained no case and punctuation information. Numbers,
symbols and acronyms were also converted to their verbal
forms with lookup tables. We then used this synthesised cor-
pus of pseudo ASR as the source, and the original corpus as
the target of our monolingual MT. The monolingual transla-
tion system was trained on 37.6M words (Table 2). It per-
formed monotonic translation with phrases of as long as 7
words.

5. Decoding

The evaluation systems for ASR and MT are multi-pass sys-
tems with resource optimisation and environment manage-
ment capabilities [11, 18]. The ASR is a two-stream multi-
pass system. It is illustrated in Figure 1. The two streams
ASR1 and ASR2 differ by the acoustic model training data
(detailed in Table 1) and also the tandem configurations (de-
tailed in §3). Both streams follow the same routine along
the multi-pass decoding system. In pass 1, a unified de-
coding result was generated using a non-VTLN DNN and
GMM-HMM tandem system with cepstral mean and vari-
ance (CMVN) normalisation trained on ASR2 data. These
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Table 3: Tree-search and WFST decoder
Tst11 Tst12

Decoder WER RT WER RT
Tree-search 23.7% 18.4 27.0% 19.8
WFST 23.7% 3.0 27.0% 3.3

hypothesis transcripts were used for inferring the warp fac-
tors. The filterbank (for both ASR1 and ASR2) and PLP
(for ASR1 only) features were then warped and CMVN nor-
malised, and the system branched off into two streams with
two VTLN decoders trained on ASR1 and ASR2 data respec-
tively.

After pass 2 decoding, speaker-based MLLR cross adap-
tations were carried out. The transcripts from ASR1 was used
for the model transformation in ASR2 system and vice versa.
The number of regression classes was set to 16. When pass 3
decoding was done, MLLR self adaptations were performed.
The number of regression classes was also set to 16.

All pre-final stage decoding made use of weighted finite
state transducers (WFSTs) for fast implementation. In a pi-
lot experiment, PLP systems with heteroscedastic linear dis-
criminant analysis (HLDA) were trained on the ASR2 data
[19]. WFST decoding with a pruned 4-gram grammar net-
work was compared with the standard tree search with an
unpruned 3-gram LM. The WER and real-time factor (RT)
on IWSLT 2011 evaluation and IWSLT 2012 evaluation data
are shown in Table 3. WFST was shown to achieve the same
performance as tree-search decoding, with much faster de-
coding speed.

In the final stage, acoustic and language model rescoring
were performed. Base lattices were generated with 2-gram
LM pruned with a threshold 10−10. Lattice expansion was
done with 4-gram unpruned language models. Three settings
were tried and the results were compared,

(i) Language model rescoring with the 4-gram LM
(ii) Considering pronunciation probability (Pron. prob.)

on top of (i)
(iii) Acoustic and language model rescoring with the set-

ting of (ii)
ASR performance in terms of WER are shown in Table

4. The initial non-VTLN system gave WER of 16.9% and
17.7% on IWSLT 2011 and 2012 data respectively. Moving
towards the VTLN systems, when ASR1 and ASR2 branched
off, it is observed that the ASR1 model gave 1.0% to 1.4%
lower WER than the ASR2 model. This is because the data
in ASR1 had a better match in terms of domain. Incremental
performance gains can be observed in individual steps, par-
ticularly MPE, cross-adaptation and language model rescor-
ing. The WER difference between ASR1 and ASR2 dimin-
ished to 0.4-0.5% after all optimisation steps. After system
combination, the final WER is 21-25% relatively lower com-
pared with the initial system.

MT Decoding was performed with cube pruning [20]
both in tuning and testing. Decoding was done with the min-

Table 4: WER of the multi-pass ASR systems
Tst11 Tst12

ASR system ASR1 ASR2 ASR1 ASR2

Non-VTLN – 16.9% – 17.7%
+VTLN 15.4% 16.4% 16.4% 16.8%
+MPE 14.7% 15.7% 16.0% 16.1%
+Cross-adapt 14.0% 14.9% 14.2% 14.8%
+Self-adapt 14.0% 15.0% 14.2% 14.7%
+LM rescoring 13.4% 14.5% 13.5% 14.2%
+Pron. prob. 13.3% 14.2% 13.4% 14.0%
+AM rescoring 13.3% 13.8% 13.4% 13.7%

ROVER —13.3%— —13.2%—

Table 5: MT system performance on eval data
BLEU(c)

Language pair Dev10 Tst12
(MT with true transcript)
En→Fr 40.9
En→De 21.5

(Monolingual translation)
En(pseudo ASR)→En 88.0
En(ASR)→En 69.0

(SLT)
En(ASR)→En→Fr 31.7
En(ASR)→En→De 16.8

imum Bayes risk criterion and reordering over punctuations
was forbidden. To restore the correct case of the output the
truecasing heuristic was employed. The same set of standard
techniques was applied on En→Fr and En→De translation.

The MT system was tested on IWSLT 2010 development
data and 2012 evaluation data, and the results are shown
in Table 5. Performance are shown in terms of cased and
punctuated BLEU scores. When given the reference tran-
script, the MT system gave 40.9 and 21.5 BLEU score for
MT tasks in En→Fr and En→De respectively. The mono-
lingual translation system (§4) restored case and punctuation
information. It was tested on pseudo ASR and real ASR out-
put and yielded 88.0 and 69.0 BLEU score. Finally in the
SLT setting, the decoded ASR result was fed to the mono-
lingual translation system and the output were subsequently
translated. The BLEU score is 31.7 and 16.8 for SLT tasks
in En→Fr and En→De respectively.

In Table 6, the official IWSLT 2014 evaluation perfor-
mance in terms of BLEU and TER (cased, punctuated and
non-case, non-punctuated) for the USFD primary system is
shown.

Table 6: Primary SLT system performance (Tst14)
Language pair BLEU(c) TER(c) BLEU TER
En→Fr 23.45 59.94 24.14 58.97
En→De 14.75 70.15 15.24 69.15
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Figure 2: System integration with ASR and MT

6. System integration
The USFD primary system is a pipeline SLT system in which
1-best ASR result was directly fed to the MT system. System
integration experiments were tried in the En→Fr SLT task
and the results were submitted as contrastive systems. Fig-
ure 2 depicts the integrated system and its comparison with
the pipeline system. In the integrated system, ASR system
hypotheses are expanded in the form of lattices, confusion
networks or N -best lists. A quality estimation (QE) module
evaluated and rescored the ASR outputs before they were fed
to the MT system.

In our implementation, 10-best outputs from the ASR
system on the IWSLT 2011 evaluation data were used for QE
training. The QE module derived 117 QuEst [21, 22] features
from each sentence to describe its linguistic, statistical prop-
erties as well as the statistics from the ASR and MT models.
Out of the 117 features, top 58 features were selected us-
ing the Gaussian Process (GP) with RBF kernel as described
in [23]. Further, GP was used to learn the relationship be-
tween the selected features and the translation performance
of the sentence (in this case, sentence-based METEOR score)
[24]. During testing, the estimated translation performance
was used to rescore the 10-best ASR output. Details of the
integrated system were described in [25].

Table 7: Contrastive SLT system performance (En→Fr)
Setting Tst12 Tst14
Contrastive 1 (baseline) 31.33 23.18
Contrastive 2
(+ 10-best list rescoring) 31.51 23.27
Contrastive 3
(+ ASR confidence-informed rescoring) 31.87 23.44

The ROVER combination of ASR1 and ASR2 systems
only provided 1-best output. In the integration experiment,
the 10-best output from ASR1 was used instead.

Performance of the contrastive systems in terms of cased
and punctuated BLEU score is shown in Table 7. Contrastive

1 result is from the baseline system with pipeline setting.
Contrastive 2 and 3 show the results of two different system
integration settings. The baseline system gave BLEU scores
31.33 and 23.18 on IWSLT 2012 and IWSLT 2014 data. The
baseline numbers are inferior to the primary system number
(IWSLT 2012: 31.7; IWSLT 2014: 23.45) as shown in Ta-
ble 5 and 6. This is because the baseline here did not benefit
from ASR system combination.

Rescoring gives 0.18 and 0.09 BLEU improvements to
IWSLT 2012 and IWSLT 2014 data respectively. By in-
specting the results, it was found that rescoring generally had
higher effectiveness for the sentences with low ASR confi-
dence. Therefore, a confidence threshold was set, and rescor-
ing was only performed when the ASR confidence dropped
below this threshold. For IWSLT 2012 data, optimality was
reached when 55% of the sentences were selected by this
confidence criteria to rescore, resulting a further 0.36 BLEU
score gain. This threshold was applied on IWSLT 2014 data,
a 0.17 BLEU score gain was observed.

7. Summary
In this paper, the USFD SLT system for IWSLT 2014 was
described. Automatic speech recognition (ASR) is achieved
by two multi-pass deep neural network systems with slightly
different tandem configurations and different training data.
Machine translation (MT) is achieved by a monolingual
phrase-based monotonic translation system which recovers
case and inserts punctuation, followed by a bilingual phrase-
based translation system. The USFD contrastive systems ex-
plore the integration of ASR and MT by using a quality es-
timation system to rescore the ASR outputs, optimising to-
wards better translation. This gives noticeable BLEU im-
provement on the IWSLT 2012 and 2014 evaluation data.
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Abstract
This paper describes the speech recognition systems of IOIT
for IWSLT 2014 TED ASR track. This year, we focus on
improving acoustic model for the systems using two main
approaches of deep neural network which are hybrid and bot-
tleneck feature systems. These two subsystems are combined
using lattice Minimum Bayes-Risk decoding. On the 2013
evaluations set, which serves as a progress test set, we were
able to reduce the word error rate of our transcription systems
from 27.2% to 24.0%, a relative reduction of 11.7%.

1. Introduction
The International Workshop on Spoken Language Transla-
tion (IWSLT) is a yearly scientific workshop, associated with
an open evaluation campaign on spoken language transla-
tion. One part of the campaign focuses on the translation
of TED Talks, which are a collection of public lectures on
a variety of topics, ranging from Technology, Entertainment
to Design. As in the previous years, the evaluation offers
specific tracks for all the core technologies involved in spo-
ken language translation, namely automatic speech recogni-
tion (ASR), machine translation (MT), and spoken language
translation (SLT).

The goal of the ASR track is the transcription of audio
coming from unsegmented TED and TEDx talks, in order
to interface with the machine translation components in the
speech-translation track. The quality of the resulting tran-
scriptions are measured in word error rate (WER).

In this paper we describe the speech recognition systems
which we participated in the TED ASR track of the 2014
IWSLT evaluation campaign. This year, our system is a fur-
ther development of our last year’s evaluation system [1], and
focuses on improving acoustic model using deep neural net-
work. There are two main approaches for incorporating ar-
tificial neural networks in acoustic modeling today: hybrid
systems and tandem systems. In the hybrid approach, a neu-
ral network is trained to estimate the emission probabilities
for Hidden Markov Models (HMM) [2]. In contrast, tandem
systems use neural networks to generate discriminative fea-
tures as input values for the common combination of Gaus-
sian Mixture Models (GMM) and HMMs. One of the com-
mon tandem system uses the activations of a small hidden
layer (“bottleneck features”, BNF [3]).

The organization of the paper is as follows. Section 2
describes the data that our system was trained on. This is fol-
lowed by Section 3 which provides a description of the way
to extract deep bottleneck features. An overview of the tech-
niques used to build our acoustic models is given in Section
4. Dictionary and language model are presented in Section
5. We describe the automatic segmentation process in Sec-
tion 6. Our decoding procedure and results are presented in
Section 7.

2. Training Corpus
For acoustic model training, we used TED talk lectures
(http://www.ted.com/talks) as training data. Approximately
220 hours of audio, distributed among 920 talks, were
crawled with their subtitles, which were deliberately used
for making transcripts. However, the provided subtitles do
not contain the correct time stamps corresponding with each
phrase as well as the exact pronunciation for the words spo-
ken, which lead to the necessity for long-speech alignment.

Segmenting the TED data into sentence-like units used
for building a training set was performed with the help of
SailAlign tool [4] which helps us to not only acquire the tran-
script with exact timing, but also to filter non-spoken sounds
such as music or applauses. A part of these noises are kept
for noise training while most of them are abolished. After
that, the remained audio used for training consists of around
160 hours of speech.

3. Deep Bottleneck Features
In this work, we applied the deep neural network architec-
ture for bottleneck feature extraction (DBNFs) as in [5] [6]
and depicted in Figure 1. The network consists of a variable
number of moderately large, fully connected hidden layers
and a small bottleneck layer which is followed by an addi-
tional hidden layer and the final classification layer.

The Mel-frequency cepstral coefficients (MFCCs) fea-
tures were used as input of deep neural network, which con-
tain 39 coefficients including 12 cepstral coefficients, 1 en-
ergy coefficient added with delta and double-delta features
were extracted after windowing with the window size of 25
milliseconds and frame shift of 10 milliseconds. Then they
were pre-processed using the approach in [7] that is called
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splicing speaker-adapted features with 40 dimensions. This
features for each frame were stacked with 9 adjacent sam-
ples, resulting in a total of 360 dimensions. For pre-training
the stack of auto-encoders, mini-batch gradient descent with
a batch size of 128 and a learning rate of 0.01 was used. In-
put vectors were corrupted by applying masking noise to set
a random 20% of their elements to zero. Each auto-encoder
contained 1024 hidden units and received 1 million updates
before its weights were fixed and the next one was trained on
top of it.

 

Hidden Layers 
Output layer 

Bottleneck 

layer 

Discarded after 

network training 

Speech input 

feature window 

Figure 1: Deep Network Architecture for Bottleneck Fea-
tures

The remaining layers were then added to the network,
with the bottleneck layer consisting of 39 units, another
hidden layer and output layer containing 4,500 context-
dependent HMM states. Again, gradients were computed
by averaging across a mini-batch of training examples; for
fine-tuning, we used a larger batch size of 256. The learn-
ing rate was decided by the newbob schedule: for the first
epoch, we used 0.008 as the learning rate, and this was kept
fixed as long as the increment in cross-validation frame accu-
racy in a single epoch was higher than 0.5%. For the subse-
quent epochs, the learning rate was halved; this was repeated
until the increase in cross-validation accuracy per epoch is
less than a stopping threshold, of 0.1%. The activations of
the 39 bottleneck units are stacked over an 9-frame context
window and reduced to a dimensionality of 40 using linear
discriminant analysis (LDA) and maximum likelihood linear
transformation (MLLT).

4. Acoustic Model
4.1. Baseline Acoustic Model

Baseline HMM/GMM acoustic model were performed with
the Kaldi developed at Johns Hopkins University [8]. Nine
consecutive MFCC feature frames were spliced to 40 dimen-
sions using linear discriminant analysis (LDA) and maxi-
mum likelihood linear transformation (MLLT) that is a fea-
ture orthogonalizing transform, was applied to make the fea-

tures more accurately modeled by diagonal-covariance Gaus-
sians.

All models used 4,500 context-dependent state and
96,000 Gaussian mixture components. The baseline sys-
tems were built, follow a typical maximum likelihood acous-
tic training recipe, beginning with a flat-start initialization
of context-independent phonetic HMMs, followed by tri-
phone system with 13-dimensional MFCCs plus its deltas
and double-deltas and ending with tri-phone system and
LDA+MLLT.

4.2. Hybrid Acoustic Model

For the hybrid network training, we used the same techniques
that described in the deep bottleneck feature section. The net-
work architecture, we settled with a stacked 5 auto-encoders
containing 1024 units each. Its input was used the same with
DBNFs network, MFCCs feature were pre-processed and
stacked over a 9 adjacent frames. 4,500 context-dependent
target states were used for supervised training that is the
number of tied states in the respective baseline systems.

5. Dictionary and Language Model
The word set contains 131,137 words. The lexicon was
built based on the Carnegie Mellon University (CMU) Pro-
nouncing Dictionary v0.7a; the phoneme set contains 39
phonemes. This phoneme (or more accurately, phone) set
is based on the ARPAbet symbol set developed for speech
recognition uses. The vowels may carry lexical stress, rang-
ing from no stress, primary stress to secondary stress.

For language modeling, the in-domain data was provided
by organizer and 1/8 of Giga corpus was also utilized by fil-
tering it according to the Moore-Lewis approach [9]. Both
two datasets were normalized using the normalization toolkit
from CMU. The vocabulary used to train language models is
the same as in the lexicon. The training data for language
model is summarized in Table 1.

Table 1: Training data for language modeling for English
ASR Task.

Data Number of sentences Number of tokens
TED 156,460 2,708,816

1/8 Giga 2,565,687 56,488,064

We trained 3-gram language model using SRILM toolkit
with the modified interpolated Knesey-Ney smoothing tech-
nique [10] from each of data set. These were then combined
using linear interpolation as follows:

P (w|h) = λ1P1(w|h) + λ2P2(w|h) + ...+ λnPn(w|h)

Where λ1, λ2, ..., λn are the interpolation weights which
were chosen to maximize the likelihood of a held out TED
data set.
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6. Auto Segmentation

The evaluation data has only provided unsegmented audio
data since last year. Therefore, in our works the LIUM Di-
arization toolkit [11] was used to divide the talk into small
sentence-like segments. Figure 2 provides a general descrip-
tion on the diarization process. First, 13 MFCC features were
extracted from the long audio file. After that, a Viterbi de-
coding is performed to generate a segmentation. Some of
segment boundaries produced by the Viterbi decoding fall
within words. These boundaries are adjusted by applying a
set of rules defined experimentally. Detection of gender and
bandwidth is then done using a GMM for each of the 4 com-
binations of gender (male / female) and bandwidth (narrow
/ wide band). Finally, GMMbased speaker clustering is car-
ried out to map each speech segment to the corresponding
speaker.

Unsegmented audio 
Feature Extraction 

(MFCCs 13) 

Segmentation based on 

Viterbi Decoding Speech Detection 

Gender and Bandwitdth 

detection 

Speaker clustering 

(GMM based) 

Segmented audio 

Figure 2: Deep Network Architecture for Bottleneck Fea-
tures

Comparing automatic and manual segmentation, the dis-
parity in word error rates is disclosed in Table 2. It is notable
that the automatic speech detection caused approximately
2 percent loss of the spoken audio, resulted in inevitably
decreasing the error rates, presented by deletions. Experi-
ments conducted with tst2013 data illustrated that the WER
increased 10% relatively, compared with the same data sets
which are manually segmented. The segmentation cannot be
guaranteed to be precise at the beginning or the end of the
sentence, the output segments are sometime incomplete sen-
tence, or incomplete phrases, which affects recognition re-
sults. Last year, we proposed a type of recurrent neural net-
work language model(RNNLM) [1] to resolve this problem.
We did not use RNNLM this year because of time consum-
ing.

7. Decoding Procedure and Results
During development, we evaluated our system using the
2012 development set and 2013 test set that released by the
IWSLT organizers.

Segmented 

Speech  

MFCC 

Extraction 
DBNFs 

Extraction 

Decoding with 

Baseline for SAT 

transform 

Decoding with 

Hybrid system 

Decoding with 

DBNFs system 
3-gram 

LM 

Lattice combine 

Figure 3: The full decoder architecture

Figure 3 shows the complete decoding architecture. Af-
ter feature extraction step, followed by decoding with the
baseline system to estimate the transformations for speaker
adaptation (fMLLR algorithm), we operate two parallel de-
coding sequences for the tandem and hybrid acoustic models.
For each model, the complete process consists of a decoding
with the trigram LM using Kaldi decoder tool. Lattices out-
put from the this pass were combined using Lattice Minimum
Bayes-Risk (MBR) decoding as described in [12]

Table 2: English ASR results for various acoustic models and
segmentation types (manual, auto)

System WER(%)
dev2012 tst2013 tst2013 auto

Baseline 30.0 36.1 –

Last year 22.9 29.5 27.2

DBNFs(S1) 19.5 23.8 25.7

Hybrid(S2) 20.0 23.6 25.3

S1+S2 18.7 22.7 24.0

Table 2 lists the performance of our systems in terms of
the word error rate (WER). Regarding the performance of the
baseline system, the WER is 30.0% on dev2012 and 36.1%
on tst2013. The second row is the number of the best sys-
tem from last year [1] where we applied state-of-the-art tech-
niques for acoustic model without deep neural network. Re-
sults for applying deep bottleneck features are listed on third
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row of the table. As we can see the results, the DBNF num-
bers are about 10% absolute (about 33% relative) better than
the baseline numbers on both sets. The hybrid DNN/HMM
combination also outperforms baseline setup with similar re-
sults to DBNFs number. The last row on the table shows
the final system combination results of DBNFs and Hybrid
systems that gives a further 1% absolute WER reduction as
compared to the best single system.

8. Conclusions
In this paper, we presented our English LVCSR systems, with
which we participated in the 2014 IWSLT evaluation. The
acoustic model was improved using deep neural network for
this year evaluation. On the 2012 development set for the
IWSLT lecture task our system achieves a WER of 18.7%,
and a WER of 24.0% on the 2013 test set.

In the future, we intend to improve language model using
deep neural network as in [1] as well as apply a hybrid DNN
on top of deep bottleneck features [6] and multi-lingual net-
work training approaches [13] to improve acoustic model for
the systems.
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Abstract

In this paper, we present our submitted MT system for the
IWSLT2014 Evaluation Campaign. We participated in the
English-French translation task. In this article we focus on
one of the most important component of SMT: the language
model. The idea is to use a phrase-based language model.
For that, sequences from the source and the target language
models are retrieved and used to calculate a phrase n-gram
language model. These phrases are used to rewrite the par-
allel corpus which is then used to calculate a new translation
model.

1. Introduction
Machine translation systems have evolved since several
decades from the use of a word to the use of a sequence of
words (phrases) as basic units for translation. Currently, all
the Statistical Machine Translation (SMT) systems are based
on phrases. Succinctly, in the decoding step, the source sen-
tence is segmented into phrases, each phrase is then trans-
lated into the target language and finally phrases are re-
ordered [1]. At each step of the decoding phase, hypothe-
sis are created and expanded until all words of the source
sentence are covered. The expansion step produces a huge
number of hypothesis which are constrained by the future
cost estimation depending on the language model and the
translation model probabilities. To achieve good translation
quality, SMT researchers make a lot of effort in improving
the translation model which moved from the original single-
word-based models to phrase-based-models [1], in order to
better capture the context dependencies of the words in the
translation process. In the other hand and despite the im-
provements made in language modelling [2], [3], the state-
of-the-art SMT systems use standard word n-gram models.

The idea, in this paper is to enhance the quality of SMT
systems by improving their Language Models (LM). For that,
we propose to use a phrase-based LM. This kind of models
has already shown good performances in speech recognition
tasks [4], [5] and we hope that it can help in the improve-
ment of the machine translation task. In SMT, the language
model is calculated on the target language. Then, to get

a phrase-based language model, the target language model
should be rewritten in terms of sequence of words. To do
this, we propose to extract the source phrases using triggers
[4]. We then use the inter-lingual triggers to retrieve the cor-
responding target sequences [6], [7]. Both source and target
phrases are used to rewrite the parallel corpus which is used
to train the language and the translation models. In section 2,
we give an overview of the source phrase extraction method.
Then in section 3, we present the method which associates to
each source sequence its equivalent sequences in the target
language. A description of the used corpora and the results
achieved are presented and discussed in section 5 and 6. We
end with a conclusion which points out the strength of our
method and gives some tracks about future work in our re-
search group.

2. Source phrases extraction
We use the concept of triggers [4],[7],[8] to extract pertinent
sequences from a corpus. A trigger is composed of a word
and its best correlated triggered words estimated in terms of
mutual information (MI) :

I(x, y) = P (x, y) log
P (x, y)

P (x)P (y)
(1)

Where P (x, y) is the joint probability and P (x) and P (y) are
marginal probabilities. This allows to build a sequence of 2
words, to identify long phrases, an iterative process retrieves
first, sequences of two words by grouping contiguous words
which have a high MI then, in the second iteration, phrases of
length 3 are identified, etc. To maintain a reasonable number
of phrases, only the sequences which have a higher MI than
the average MI of all sequences are kept for the forth coming
steps. At the end of the process, we get a list of phrases
which is used to rewrite the source corpus in terms of words
and sequences. Examples of the retrieved phrases are given
in table 1.

Since classical triggers allow to establish a triggering-
triggered relationship between two events from the same lan-
guage, Lavecchia et al. in [7] proposed to determine corre-
lations between words coming from two different languages.
These triggers called inter-lingual triggers. Each of them is
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Phrases MI ×10−5

parlement européen 69.07
projet européen 0.78
populaire européen 0.22
politique économique 0.17
commission des affaires juridiques 0.039
commission des relations économiquess 0.045
je voudrais vous demander 0.032

Table 1: Examples of source phrases

composed of a triggering source event and its best correlated
triggered target events.

3. Target phrases extraction
Once we have determined the list of the source sequences,
we can then determine their corresponding sequences in the
target side. For that, we used the method proposed by Lavec-
chia et al. [7] based on n-to-m inter-lingual trigger model.
This method allows to associate to each source phrase of n
words a set of target sequences of variable size m. In fact, for
each source phrase of k words, we choose one or more tar-
get sequences of length k ±∆k without performing any word
alignment. In our case, for the language pair English-French,
we set ∆k to 1 in a way that a sequence of two words will
be associated with the target sequences of length one, two or
three words. Thus, we select for each source phrase the first
30 most relevant target sequences that have the best MI. An
example of the extracted phrases with their best correspond-
ing target sequences is presented in table 2.

Source phrases Target phrases MI ×10−2

european parliament 2.3
the european parliament 2.01

parlement européen parliament 1.7
europen 1.6
the european 1.3
thank you 0.43
thank you very much 0.091

je vous remercie thank you for your 0.067
i thank you 0.063
very much 0.054

Table 2: Example of inter-lingual phrases

4. How to process the parallel corpus?
The objective in this section is to show how to rewrite both
source and target copora in terms of phrases. For each source
phrase, we select all possible target phrases by using inter-
lingual triggers. The target phrases are added, in a decreasing
order of MI, to a dictionary of phrases. Then the target corpus
is rewritten in terms of these phrases. In case of conflict, the
algorithm will prefer the phrase with the highest MI. At this

point, we get a bilingual training corpus written in terms of
word and phrases. The achieved corpora are then used to
train the language and translation models. Table 3 illustrates
some examples of sentences of the obtained training corpora.

thank you very much for your attention .
je vous remercie de votre attention .
thank you very much for your contributions and support .
merci de vos contributions et de votre soutien .
i declare the session of the european parliament adjourned .
je déclare interrompue la session du parlement européen .
adjournment of the session
interruption de la session
a new deal for the new world
une nouvelle donne pour le nouveau monde
it is easier in certain areas .
c’ est plus facile dans certains domaines .

Table 3: Examples of sentences of the training corpora

5. Resources Used in IWSLT 2014

Training the translation and language models is constrained
to data supplied by the organizers. For this campaign, we
only participated in the English-French translation task.
Among the parallel data provided, we use WIT3 [9] and EU-
ROPARL [10]. As usual, we clean the raw data before per-
forming any model training. This includes the lowercasing
conversion and removing of long sentences. After the pre-
processing operation, we get a parallel corpus of 1 767 644
sentences. The English side has a total of 35 million words
(117006 unique tokens). The French side has a total of 38
millions words (141150 unique tokens).
A 5-gram language model has been trained with SRILM
toolkit [11]. The word alignment of the parallel corpora is
generated using GIZA++ Toolkit [12] in both directions. Af-
terwards, the alignments are combined using the grow-diag-
final-and heuristic to obtain symetric word alignment model
[1]. For decoding we used Moses toolkit [13] and the stan-
dard MERT to tune the weights of our features on the 100-
best translation assumptions of the development set. Eight
default features are used:

• Bidirectional phrase translation probability
(p(e|f), p(f |e))

• Bidirectional lexical probability (lex(e|f), lex(f |e))

• Phrase penalty

• Word penalty

• Distortion model

• 5-gram language model
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6. Experiments
6.1. The retrieved phrases

In this task, we set the maximum size of a phrase to 8
words, this is due to the fact that in previous experiments
[14] phrases with more than 8 words do not contribute effec-
tively in the improvement of the machine translation quality.
The method described in 2 is applied in a way that at each
iteration, we retrieve phrases of different lengths depending
on the size S of the source phrase. To control that, we keep
only target phrases of T words with T = S ± ∆S. For in-
stance, in the first iteration, only sequences of T words (with
T ∈ {1, 2, 3}) are kept.

We extracted from the French part of the training cor-
pus, a set of 23064 phrases. Then, for each source phrase
of S words, we kept the 30 best potential translations of size
T . These sequences are included in the translation table and
used to rewrite the training corpus. In this way, the target
corpus is composed of single words and phrases of at maxi-
mum of 8 words. Consequently, training a 5-gram language
model will take into account phrases up to 40 words (in the
case of a 5-gram where each gram is composed of a phrase
of 8 words).
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Figure 1: Histogram of the phrases number according to their
size.

Figure 1 plots the histogram of the number of phrases
contained in the training and the test corpora, according to
their size. We can notice that the majority of phrases used are
composed of two or three words which represents more than
60% of the extracted phrases. This histogram shows also that
the number of phrases which occur in the test corpus is very
low and does not exceed 12% of the whole extracted phrases.

6.2. Test data

The test data has to be written in the same way as the training
corpus, for that two solutions are possible:

• Use the test corpora written in terms of words then we
defragment our sequences belonging to the target part
of the translation table.

• Rewrite the test data in terms of words and phrases.
For this, the source sequences could be sorted accord-
ing to their sizes or on their MI values. Then, for
each sentence we explore the list of sequences in a
decreasing manner. It worths mentioning that sorting
sequences according to their size promotes the use of
large size sequences while sorting sequence on their
MI promotes the use of sequences short.

It should be noted that the system parameters were trained
on the development corpus which combines the dev2010,
tst2010 and tst2012. However we have chosen to report re-
sults on the tst2011, tst2013 and tst2014. Reported results are
case-insensitive BLEU [15]. In addition, we performed tests
on translation systems based on a training corpus written in
terms of words and sequences:

• Sys1: uses a test corpus written in terms of words and
sequences.

• Sys2: uses a test corpus written only in terms of words.

Table 4 illustrates the results obtained by different experi-
ments on both development and test corpora.

System Dev tst11 tst13 tst14
baseline 28.91 36.84 - -
Sys1 26.51 33.52 - -
Sys2 28.27 35.48 30.91 26.97

Table 4: Results for the English → French MT task

On the development and the test corpus tst11, the use of a
corpus written in terms of words (Sys2) is better than the one
where the test data is rewritten in terms of phrases (Sys1).
That’s why, we decided to submit Sys2 as our primary
SMT system. The small number of sequences used in our
translation system and compared to the table of the baseline
system is probably the reason which make our results worse
than the baseline. Another explanation is related to the weak
number of phrases contained in the test corpus, only 12% for
tst13. Some translation examples are shown in Table 5.

7. Conclusions
In this paper, we evaluate our translation system on the data
of IWSLT 2014 for English-French. Our contribution fo-
cuses on the use of a phrase-based language model and a
translation model based on the phrases used in the language
model. In order to train a phrase-based language model, we
identified common source phrases by an iterative process.
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Source very often when i meet someone and they learn this about me there ’s a certain kind of awkwardness .
Baseline très souvent , lorsque je rencontre quelqu’ un , et ils apprennent sur moi il y a une certaine gêne .
Sys2 très souvent quand je rencontre quelqu’ un , et ils apprennent ce sur moi il y a un certain type de gêne .
Reference très souvent , quand je rencontre quelqu’ un et qu’ ils découvrent que je suis comme a , il y a un certain malaise .
Source when we look at the population growth in terms of cars , it becomes even clearer .
Baseline lorsque nous examinons la croissance de la population en termes de voitures , il devient encore plus clair .
Sys2 lorsque nous examinons la croissance démographique en termes de voitures , il devient encore plus clair .
Reference quand nous regardons l’ accroissement de la population en termes de voitures , ça devient même plus clair .

Table 5: Translation example from the tst11 set, comparing the baseline and the submitted system (Sys2) given a reference
translation.

Then, we retrieved their potential translations by using inter-
lingual triggers. These phrases are included in the translation
table and used to rewrite the training corpus. The new corpus
obtained is used to train the translation and language mod-
els. We evaluated the translation quality with the Bleu met-
ric. The results showed that the state-of-the-art SMT system
is better than our system. But, our results are encouraging
and we plan to add some other features to the phrase based
language model to improve the overall quality of our SMT
system.
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Abstract

This paper describes the Spoken Language Translation sys-
tem developed by the LIUM for the IWSLT 2014 evalua-
tion campaign. We participated in two of the proposed tasks:
(i) the Automatic Speech Recognition task (ASR) in two lan-
guages, Italian with the Vecsys company, and English alone,
(ii) the English to French Spoken Language Translation task
(SLT). We present the approaches and specificities found in
our systems, as well as the results from the evaluation cam-
paign.

1. Introduction

This paper describes the ASR and SLT systems developed
by the LIUM for the IWSLT 2014 evaluation campaign.
This year, the campaign has the particularity to bring new
recognition languages and translation directions, while still
proposing TED Talks recognition and translation tasks.
Consequently, we participated in the two tasks mentioned
above, with English and Italian languages for the ASR task;
and English to French for the SLT task. Since we last partic-
ipated in IWSLT three years ago in 2011, new approaches
and specificities were developed by the LIUM, both in the
ASR and in the SLT tasks, which will be detailed here. For
ASR in Italian, this work was made in collaboration with the
Vecsys company.

The remainder of this paper is structured as follows: in
section 2, we describe the data used for both tasks and how
the selection was performed. In section 3, we present the ar-
chitecture of our ASR system and the results obtained on the
various corpora used during the campaign. Then in section 4,
we expose the architecture of our SLT system, along with its
results during the campaign. Lastly, the section 6 concludes
this system description paper.

2. Data Selection for the Tasks
Performance of Natural Language Processing (NLP) systems
like the ones we are going to present here can often be en-
hanced using various methods, which can occur before, dur-
ing or after the actual system processing. Among these, one
of the most efficient pre-processing method is data selection,
i.e. the fact to determine which data will be injected into the
system we are going to build. For this campaign, many data
selection processing was done, both in ASR and SLT tasks.

2.1. Selection for the ASR task

2.1.1. Acoustic models training data selection

For our acoustic modeling we used as a primary source the
TED-LIUM corpus release 2 [1], removing from it all talks
recorded after December 31st, 2010. In order to strengthen
this base, we first added data from the Euronews corpora [2]
distributed by the campaign organizers and from the 1997
English Broadcast News Speech (HUB4) [3]. Then, from the
MediaEval 2014 evaluation campaign Search and Hyperlink-
ing Task data transcripts (BBC recordings from 2008 which
were decoded by the LIUM) [4], we applied a threshold on
our confidence measures to select the best possible segments
for our system within a limit of 50 hours of speech. Table 1
summarizes the characteristics of the data included in our
ASR system acoustic models.

Corpus Duration Segments Words
TED-LIUM 130.1h 61 796 1 447 022
Euronews 68.2h 33 686 817 649
1997 HUB4 75.0h 20 652 852 517
MedialEval 14 50.0h 46 713 368 118
Total 323.3h 162 847 3 485 306

Table 1: Characteristics of the acoustic data used in the
LIUM ASR system acoustic models.
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2.1.2. Language models training data selection

Since language models training data is constrained for the
ASR task, we applied our data selection tool XenC [5] on
each allowed corpus at our disposal: basically all of pub-
licly available WMT14 data, a provided TED Talks closed-
captions corpus and the LDC Gigaword. Based on cross-
entropy difference from a corpus considered as in-domain
and out-of-domain data, our tool allows to perform relevant
data selection by scoring out-of-domain sentences regarding
their closeness to the in-domain data. Table 2 summarizes the
characteristics of the monolingual text data used to estimate
our system language models.

Corpus Original # Selected # % of
of words of words Orig.

IWSLT14 0.1M 0.1M 100.00
Common Crawl 195.4M 13.6M 6.98
Europarl v7 56.4M 1.8M 3.22
Gigaword LDC 4 985.3M 168.2M 3.37
109 FR-EN 649.4M 11.9M 1.83
News Crawl 1 503.1M 44.8M 2.98
News-Comm. v7 4.7M 0.7M 14.04
UN 200x 360.1M 1.8M 0.50
Yandex 1M 24.1M 4.6M 19.01
Total (w/o IWSLT14) 7 778.5M 247.4M 3.18

Table 2: Characteristics of the monolingual text data used in
the LIUM ASR system language models.

2.2. Data processing and selection for the SLT task

All available corpora have been used to train the different
component of the SMT system. The source side of the bi-
texts have been processed in order to make it more similar
to speech transcriptions. After a standard tokenization, the
processing mainly consisted in applying regular expressions
to delete punctuations and unwanted characters, put capital
letters in lowercase and rewrite numbers in letters.

Once the processing performed, monolingual and bilin-
gual data selection has been applied using XenC [5]. For this
purpose, the TED corpus has been used as in-domain corpus
(to compute in-domain cross-entropy) and the provided de-
velopment data (dev2010 and tst2010) was used to determine
the quantity of data by perplexity minimization.

3. Automatic Speech Recognition Task in
English

In this section, we will describe the Automatic Speech
Recognition system developed by the LIUM for the IWSLT
2014 campaign, as well as present the results (both in-house
and official) obtained on various corpora.

3.1. Architecture of the LIUM ASR system

Our system architecture is mainly based on the Kaldi open-
source speech recognition toolkit [6] which uses finite state
transducers (FSTs) for decoding. A first step is performed
with the Kaldi decoder by using a bigram language model
and standard GMM/HMM models to compute a fMLLR ma-
trix transformation. A second decoding step is performed by
using the same bigram language model and deep neural net-
work acoustic models. This pass generates word-lattices: an
in-house tool, derived from a rescoring tool included in the
CMU Sphinx project, is used to rescore word-lattices with a
5-gram Continuous Space Language Model [7].

3.1.1. Speaker segmentation

To segment the audio recordings and to cluster speech
segments by speaker, we used the LIUM SpkDiarization
speaker diarization toolkit [8]. This speaker diarization sys-
tem is composed of an acoustic Bayesian Information Crite-
rion (BIC)-based segmentation followed by a BIC-based hi-
erarchical clustering. Each cluster represents a speaker and is
modeled with a full covariance Gaussian. A Viterbi decoding
re-segments the signal using GMMs with 8 diagonal compo-
nents learned by EM-ML, for each cluster. Segmentation,
clustering and decoding are performed with 12 MFCC+E,
computed with a 10ms frame rate. Gender and bandwidth
are detected before transcribing the signal. This speaker seg-
mentation was used by all the LIUM and Vecsys ASR sys-
tems.

3.1.2. Acoustic modeling

The GMM-HMM (Gaussian Mixture Model - Hidden
Markov Model) models are trained on 13-dimensions PLP
features with first and second derivatives by frame. By
concatenating the four previous frames and the four next
frames, this corresponds to 39 ∗ 9 = 351 features projected
to 40 dimensions with linear discriminant analysis (LDA)
and maximum likelihood linear transform (MLLT). Speaker
adaptive training (SAT) is performed using feature-space
maximum likelihood linear regression (fMLLR) transforms.
Using these features, the models are trained on the full
323.3 hours set, with 9 500 tied triphone states and 200 000
gaussians.

On top of these models, we train a deep neural net-
work (DNN) based on the same fMLLR transforms as the
GMM-HMM models and on state-level minimum Bayes risk
(sMBR) as discriminative criterion. Again we use the full
323.3 hours set as the training material. The resulting net-
work is composed of 7 layers for a total of 36.8 millions pa-
rameters and each of the 6 hidden layers has 2 048 neurons.
The output dimension is 7 296 units and the input dimension
is 440, which corresponds to an 11 frames window with 40
LDA parameters each. Weights for the network are initial-
ized using 6 restricted Boltzmann machines (RBMs) stacked
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as a deep belief network (DBN). The first RBM (Gaussian-
Bernoulli) is trained with a learning rate of 0.01 and the 5
following RBMs (Bernoulli-Bernoulli) are trained with a rate
of 0.4. The learning rate for the DNN training is 0.00001.
The segments and frames are processed randomly during the
network training with stochastic gradient descent (SGD) in
order to minimize cross-entropy between the training data
and network output. When these training steps are done, the
last step of training is processed, by applying the minimum
Bayes risk criterion, as indicated above. To speed up the
learning process, we use a general-purpose graphics process-
ing unit (GPGPU) and the CUDA toolkit for computations.

3.1.3. Language modeling

For language modeling, we rely on the SRILM language
modeling toolkit [9] as well as the Continuous Space
Language Model toolkit. The vocabulary used in the LIUM
ASR system is composed of 165 371 entries. The bigram
language model (2G LM) used during the Kaldi decoding
part is trained on the data presented in section 2.1.2.

With the SRILM toolkit, one 2G LM is estimated for each
corpus source, with no cut-offs and the modified Kneser-Ney
discounting method. These 2G LM are then linearly interpo-
lated to produce the final 2G LM which will be used in the
final system, using the IWSLT 2011 development and test
corpora. To rescore the word-lattices produced by Kaldi, a
trigram and a quadrigram language models (3G and 4G LM)
are estimated with the same toolkit, again by training one LM
by corpus source and then linearly interpolating them. A 5G
continuous-space language model (CSLM) is also estimated
for the final lattice rescoring, with no cut-offs and the same
discounting method as for the bigram language model. The
table 3 details the interpolation coefficients for the 2G, 3G
and 4G language models as well as the final perplexity for
each final model.

Corpus Coefficients
2G 3G 4G CSLM

IWSLT14 .36353 .23963 .19110 N/A
Common Crawl .14404 .26584 .34979 N/A
Europarl v7 .00272 .00244 .00277 N/A
Gigaword LDC .30076 .27450 .24411 N/A
109 FR-EN .02709 .02882 .02701 N/A
News Crawl .13535 .14751 .14241 N/A
News-Comm. v7 .00173 .00254 .00220 N/A
UN 200x .00300 .00411 .00391 N/A
Yandex 1M .02179 .03461 .03670 N/A
Perplexity 209.31 134.38 107.72 123.03

Table 3: Interpolation coefficients and perplexities for the bi-
gram, trigram, quadrigram and CSLM language models used
in the LIUM ASR system.

3.2. Results

We submitted three runs (one primary, two constrastives) for
the ASR task. The first contrastive is the one described in
section 3.1. The second constrastive is basically the same
system as the first, with a DNN similar the the CRIM one
described in [10]. The primary is the fusion of the two sys-
tems described above at the word-lattices level. The table
4 presents the official results from the campaign organizers.
Rankings are not known at the time of this paper publication.

System tst2014 tst2013
Primary 12.3 % 16.0 %
Contrastive 1 13.4 % 17.3 %
Contrastive 2 13.8 % 17.4 %

Table 4: Official results (Word Error Rate) for the LIUM at
the IWSLT 2014 Automatic Speech Recognition track.

4. Spoken Language Translation Task
In this section, the architecture of our Statistical Machine
Translation (SMT) system used in the SLT task is described.

4.1. Architecture of the LIUM SLT system

The SMT system is based on the Moses toolkit [11]. The
standard 14 feature functions were used (i.e phrase and lexi-
cal translation probabilities in both directions, seven features
for the lexicalized distortion model, word and phrase penalty
and target language model (LM) probability). In addition to
these, an Operation Sequence Model (OSM) [12] have been
trained and included in the system.

4.1.1. Translation model

The translation models have been trained with the standard
procedure. First, the bitexts are word aligned in both direc-
tions with GIZA++ [13]. Then the phrase pairs are extracted
and the lexical and phrase probabilities are computed. The
weights have been optimized with MERT using two versions
of the development data. For some systems, the provided
transcriptions were used, and for others, the outputs of our
ASR system was used. This was performed for the sake
of comparing the impact of ASR systems improvement (ob-
served during the last few years).

4.1.2. Language modeling

The language model is an interpolated 4-gram back-off LM
trained with SRILM [9] on the selected part of the French
corpora made available. The vocabulary contains all the
words from the development sets, the target side of bitexts
and only the more frequent words from the large monolin-
gual corpora. The interpolation coefficient have been opti-
mized using the standard EM procedure. The perplexity of
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this model was 69.37.
In addition, several large context CSLM [14] have been

trained, each with a different architecture. Those models
are used (alone or in combination) to rescore the n-best list
of SMT hypotheses. The weights for the CSLM have been
optimized with CONDOR [15], a numerical optimizer, with
−BLEU as objective function to minimize.

Name Order Projection Layer Perplexity
CSLM1 12 384 40.72
CSLM2 12 448 40.19
CSLM3 16 384 40.58

Table 5: Architecture of the various CSLM trained for rescor-
ing the n-best list of SMT hypotheses.

4.1.3. Submitted systems

A total of six systems were submitted for evaluation. One
of the differences lies in the development data used for tun-
ing. The provided development data corresponds to ROVER
outputs of several years old ASR systems. Considering that
ASR systems have greatly evolved during the last few years,
we thought that comparing an SMT system tuned with out-
puts of an old combination of ASR systems with a state-of-
the-art ASR system would be interesting. The other differ-
ence concerned the use of a rescoring step. As mentioned in
the previous section, several CSLM have been trained. Some
systems did not include any rescoring process at all, some
use only one CSLM and some combined the three CSLM
probabilities to determine the best hypothesis. When using
only one CSLM, the best performing model on the develop-
ment data has been chosen. The results and discussion are
presented in the next section.

4.2. Results and discussion

The results obtained on the development and test data are
presented in Table 6.

We translated two version of the test data. test2014 −
iwslt is the provided test data, which corresponds to a
ROVER combination of the outputs of the systems partici-
pating in the IWSLT’14 ASR task. test2014 − lium corre-
sponds to the 1-best output of the LIUM ASR system.

The first comment is that the results that we observed on
the development data are not reflected in the test data. Tuning
with two versions of the development data, providing differ-
ence of more than 2 BLEU points results in similar scores
on the test data. This is well understood when there is a mis-
match between tuning and testing conditions (i.e. tuning with
−lium corpus and testing on −iwslt). As the ASR results
have not been provided yet, we can’t make the link between
the WER and the SMT results. Also, a deeper analysis of the
outputs have to be performed in order to explain this behav-
ior.

The main improvements are obtained by rescoring the
1000-best list of hypotheses with one or more CSLM. By
comparing Contrast2 and Contrast4 systems on one hand,
and Contrast4 and Contrast6 systems on the other hand, we
can observe that CSLM rescoring provide a gain of up to
1.2 and 1.78 BLEU respectively on the development and test
data.

However, combining the three different CSLM does not
provide anymore gain. This was already observed on the de-
velopment data, but the result was never worse than using
only one language model. This tends to prove that CSLM
with different architectures (context and projection layer size
in this case) does not have a great impact on the final score.

5. Automatic Speech Recognition Task in
Italian

The ASR system used to process Italian data is a combina-
tion of the Vecsys ASR system and the LIUM ASR system.
Both systems share the same speaker segmentation and the
same training data, very restricted in the ASR task for Ital-
ian. The speaker diarization system is the same as the one
used to process English data.

5.0.1. Training data

To train language models for Italian, the number of autho-
rized sources of training data was very low. We used the
data provided by the organizers to train language and acous-
tic models, in addition to the Italian Google n-grams, listed
in the permissive data (LDC2009T25). For acoustic mod-
els, in addition to the Euronews corpora [2] distributed by
the organizers, we used about 100 hours of manually anno-
tated data owned by the Vecsys company, and recorded be-
fore June 30th 2011. Notice that we extracted about 75h from
the Euronews automatically annoted data: about 175 hour of
recordings were used to train the acoustic models of the Vec-
sys and LIUM systems.

5.1. Vecsys system

Vecsys speech recognition system is based on a multi-pass
GMM/HMM decoding of the input speech, mostly derived
from the CMU Sphinx toolkit. A first pass aims at providing
a transcription which, in accordance with the speaker seg-
mentation, is employed to estimate speaker-specific fMLLR
matrices for feature transformation. The transformed fea-
tures are used in a second decoding that produces word lat-
tices, using the same trigram back-off language model as for
the first pass, and then acoustically rescored to improve inter-
word senone scores. The final transcription is obtained by
joint linguistic rescoring of the word lattices from a 4 gram
back-off and a 4-gram continuous space language model, fol-
lowed by a confusion network decoding.
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Name CSLM Dev test2014-iwslt test2014-lium
Case No-Case Case No-Case

Name %BLEU %BLEU %TER %BLEU %TER %BLEU %TER %BLEU %TER
Primary Comb d10t10lium 25.79 26.82 59.40 27.85 57.69 24.90 60.93 25.92 59.55
Contrast1 Comb d10t10iwslt 23.30 26.78 59.40 27.82 57.99 25.06 61.10 26.04 59.73
Contrast2 CSLM1 d10t10lium 25.70 26.76 58.82 27.81 57.46 24.98 60.72 25.99 59.33
Contrast3 CSLM3 d10t10iwslt 23.24 26.89 59.36 27.94 57.94 24.95 61.43 25.96 59.97
Contrast4 - d10t10lium 24.49 25.17 59.83 26.17 58.47 23.59 61.66 24.52 60.26
Contrast5 - d10t10iwslt 22.26 25.14 60.61 26.16 59.21 23.65 62.24 24.64 60.82

Table 6: Results obtained with the submitted systems. Corpora d10t10lium and d10t10iwslt correspond to respectively the
transcription obtained with the LIUM ASR system and the provided development data.

5.1.1. Acoustic modeling

Italian phonetic lexicon is describes by a set of 27 phonemes,
and, for all consonants, gemination is modeled by dou-
bling the consonant symbol in a word pronunciation, rather
than defining a special symbol for the geminate consonant.
The GMM-HMM acoustic models are computed from 13-
dimensional PLP features (including energy) to which first
and second order derivates are appended. In all decoding
steps, PLPs are multiplied by an LDA and a MLLT ma-
trix, both estimated on the same training data, to obtain a
29-dimensional vector. The first pass uses a light-weight
set of models which comprises 6000 senones, each modeled
by a 16-component GMM, estimated by ML modeling, and
adapted by MAP according to gender. The second pass uses
8000 senones, each modeled by a 32-component GMM, esti-
mated by MPE modeling from an initial set of m/f SAT mod-
els.

5.1.2. Language modeling

Back-off language models are obtained by interpolation of
two back-off models, one estimated by Witten-Bell discount-
ing on the Google N-gram corpus, the other from Kneser-
Ney discounting and no cut-off on the TED transcriptions
provided by the organizers. On this same corpus, a 4 gram
continuous space language model is trained: scores are com-
puted for 4-grams of words included in a short list of 16384
words out of 109500 words. Such scores are linearly inter-
polated with those read from the back-off model for the cor-
responding 4 grams.

5.2. LIUM ASR system for Italian

The architecture of the LIUM ASR system for Italian is the
same as the one described in this paper for English language.
The phonetic lexicon was built from the lexicon provided in
the Festival tool for speech synthesis [16], by using the sta-
tistical grapheme-to-phoneme (g2p) tool described in [17] in
order to compute the pronunciation of words not included in
the Festival Italian lexicon. This Festival lexicon contains
about 400,000 words.

5.3. Merging Vecsys and LIUM ASR systems

Vecsys and LIUM used the same audio segmentation, pro-
vided by the LIUM SpkDiarization speaker diarization sys-
tem. Using the same segmentation makes easier the merging
between the two ASR outputs: final outputs were obtained
by merging word-lattices provided by both ASR systems, as
described in [18].

6. Conclusion
We presented the LIUM’s and Vecsys’ ASR and SMT sys-
tems which participated in the ASR and SLT tracks of the
IWSLT’14 evaluation campaign.

By integrating some of the latest LIUM developments in
Automatic Speech Recognition, we were able to achieve a
Word Error Rate score of 12.3 % on the ASR evaluation
track. While we currently can’t compare it to other results
for the tst2014 corpus, we can compare the 16.0 % tst2013
score to the last year results, which would have been ranked
4th.

By rescoring with a continuous space language model,
we obtained a gain of about 1.7% BLEU on the SLT test
data. However, the combination of several CSLM rescoring
did not produced anymore gain.
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Abstract

This paper documents the systems developed by LIMSI for
the IWSLT 2014 speech translation task (English→French).
The main objective of this participation was twofold: adapt-
ing different components of the ASR baseline system to the
peculiarities of TED talks and improving the machine trans-
lation quality on the automatic speech recognition output
data. For the latter task, various techniques have been con-
sidered: punctuation and number normalization, adaptation
to ASR errors, as well as the use of structured output layer
neural network models for speech data.

1. Introduction
LIMSI participated in the IWSLT 2014 Evaluation Cam-
paign in the spoken language translation (SLT) task for
English→French language pair. Although LIMSI hosts both
automatic speech recognition (ASR) and machine translation
(MT) research activities, this was our first contribution to the
SLT task and the effort was thus focused on one single trans-
lation direction. This year’s SLT task consists in automatic
transcription and translation of a test set composed of sev-
eral recordings of TED online conferences1. The automatic
speech transcriptions that have been used in our experiments
were produced by the in-house ASR system adapted to TED
data, rather than using the transcripts provided by the orga-
nizers (hypotheses from several automatic speech recogniz-
ers combined using the ROVER approach). As far as the au-
tomatic translation step is concerned, we addressed various
typical challenges of SLT: to bring automatic transcriptions
closer to the expectations of the MT system (mainly trained
on written text), to adapt MT models to erroneous ASR out-
put, and to improve the general translation quality.

This paper is structured as follows. We first present the
ASR system and the adaptation steps taken to improve the
automatic transcriptions of the TED data. We then describe
various approaches used to bring the ASR output data and
the expected MT input data format into accordance with each
other, as well as our attempts to adapt standard MT systems
to ASR output. Finally, the impact of re-scoring n-best trans-
lation hypotheses using SOUL models is presented in the
closing section.

1https://www.ted.com/

2. ASR systems: adaptation to TED talks data
The LIMSI automatic speech recognition system for broad-
cast data [1] was adapted to the task of transcribing TED
talks. The adaptations concern the acoustic and language
models and the pronunciation dictionary.

Prior to transcription, the audio documents are parti-
tioned identifying the portions containing speech to be tran-
scribed [2] and associating segment cluster labels, where
each segment cluster ideally represents one speaker.

Two types of acoustic features are used. The first are
PLP-like [3], with cepstral normalization carried out on a
segment-cluster basis [1]. A 3-dimensional pitch feature vec-
tor (pitch, ∆ and ∆∆ pitch) is added to the original PLP one,
resulting in a 42-dimension feature vector. The second type
are probabilistic features produced by a Multi-Layer Percep-
tron (MLP) from raw TRAP-DCT features [4], which have
been shown to improve system performance when concate-
nated with cepstral features [5]. The MLP networks were
trained using the simplified training scheme proposed in [6]
using phone state targets. The feature vector formed by con-
catenating the MLP, PLP and pitch features has 81 elements.

The acoustic models are gender-independent, tied-state,
left-to-right 3-state HMMs with Gaussian mixture obser-
vation densities (typically 32 components). The triphone-
based phone models are word-independent, but position-
dependent. The states are tied by means of a decision tree
to reduce model size and increase triphone coverage. The
acoustic models are speaker-adaptive (SAT) and Maximum
Mutual Information (MMIE) trained.

N-gram language models are obtained by interpolating
multiple unpruned component LMs trained on subsets of the
training texts and used for both decoding and lattice rescor-
ing. Language model training is performed with LIMSI STK
toolkit which allows efficient handling of huge language
models without any pruning or cutoff.

Word decoding is carried out in two passes. Each de-
coding pass produces a word lattice with cross-word, word-
position dependent acoustic models, followed by consensus
decoding with a 4-gram language model and pronunciation
probabilities. The system vocabulary contains 95k words.
Unsupervised acoustic model adaptation is performed for
each segment cluster using the CMLLR and MLLR [7], and
the lattices produced are rescored with a 4-gram back-off
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dataset WER (del., ins.)
dev2010 15.0 (4.0, 3.5)
tst2010 12.7 (3.3, 2.7)

Table 1: Case-insensitive recognition results on the 2010 dev
and tst data, scored using sclite.

LM. The first decoding pass is carried out with a modi-
fied version of our 2011 Quaero system for broadcast data
in English [8, 9] in which a language model trained on the
provided ASR texts including the IWSLT14 TED LM tran-
scriptions (3.2M words) was interpolated with the baseline
78k-word language model. The first decoding pass is done
in 1xRT. The acoustic models in the first pass were trained
on the data distributed in Quaero as well as on data from
other sources from previous European or national projects
and from the LDC. All acoustic and other language model
training data predate December 31, 2010. The Euronews data
provided by the organizers was not used. The second pass
decoding used the same interpolated language model with
acoustic models trained only on 180 hours of transcribed
TED talks predating December 31, 2010 to better target the
TED data.

The case-insensitive recognition results on the 2010 dev
and tst data are given in Table 1 scoring with the NIST sclite
scoring using the provided stm and no glm.

3. MT systems: adaptation to speech data
3.1. Machine Translation with N-code

NCODE implements the bilingual n-gram approach to
SMT [10, 11, 12] that is closely related to the standard
phrase-based approach [13]. In this framework, the transla-
tion is divided into two steps. To translate a source sentence f
into a target sentence e, the source sentence is first reordered
according to a set of rewriting rules so as to reproduce the
target word order. This generates a word lattice containing
the most promising source permutations, which is then trans-
lated. Since the translation step is monotonic, the peculiarity
of this approach is to rely on the n-gram assumption to de-
compose the joint probability of a sentence pair in a sequence
of bilingual units called tuples.

The best translation is selected by maximizing a linear
combination of feature functions using the following infer-
ence rule:

e∗ = argmax
e,a

K∑

k=1

λkfk(f , e,a), (1)

where K feature functions (fk) are weighted by a set of co-
efficients (λk) and where a denotes the set of hidden vari-
ables corresponding to the reordering and segmentation of
the source sentence. Along with the n-gram translation mod-
els and target n-gram language models, 13 conventional fea-
tures are combined: 4 lexicon models similar to the ones

used in standard phrase-based systems; 6 lexicalized reorder-
ing models [14, 15] aimed at predicting the orientation of
the next translation unit; a “weak” distance-based distor-
tion model; and finally a word-bonus model and a tuple-
bonus model which compensate for the system preference for
short translations. Features are estimated during the training
phase. Training source sentences are first reordered so as
to match the target word order by unfolding the word align-
ments [12]. Tuples are then extracted in such a way that a
unique segmentation of the bilingual corpus is achieved [11]
and n-gram translation models are then estimated over the
training corpus composed of tuple sequences made of sur-
face forms or POS tags. Reordering rules are automatically
learned during the unfolding procedure and are built using
part-of-speech (POS), rather than surface word forms, to in-
crease their generalization power [12].

3.2. MT baseline

This section describes the MT systems trained on written ma-
terial that served as a benchmark for the succeeding experi-
ments aiming at improving the translation quality for speech
transcriptions.

All the parallel corpora used in our translation systems
have been preprocessed to remove excessively long sen-
tences as well as sentences with an important length dif-
ference between the source and the target. The common
preprocessing also included tokenization using the in-house
tool described in [16] and word alignments using MGIZA++
[17] and Moses’s grow-diag-final-and heuristic for alignment
symmetrization.

All the MT systems developed in this study make use
of the N-code system described above for translation model
training and for decoding. Since the N-code system uses
factored models, the training corpora have been tagged with
part-of-speech (POS) labels using TreeTagger [18]. The tar-
get language model used discriminative log-linear interpola-
tion approach to combine the model trained on TED mono-
lingual data provided by the organizers and the bigger LM
trained on WMT data (SRILM [19] toolkit was used for both
models).

Our baseline system only uses the training data provided
by the IWSLT campaign organizers, composed exclusively
of TED talks recordings: we were thus subsequently able
to quickly experiment with various adaptation techniques as
well as to measure the impact of including large, out-of-
domain, corpora.

We performed some additional cleaning on TED cor-
pus, mostly related to extra textual information not present
in the audio signal: removing speaker names or initials at
the beginning of some lines, removing comments between
square brackets and between parentheses, etc. Those notes
are added by transcribers in order to facilitate the understand-
ing of the text by human readers, but are useless and even
confusing in the context of automatic speech translation.
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3.2.1. Impact of the out-of-domain corpora

We tried to improve the performance of the baseline system
trained on in-domain data only, by adding various bilingual
corpora from the WMT Evaluation Campaign [20]: News-
Commentary (NC), Europarl (EPPS) and Gigaword filtered
as in [21] (GIGA). All those models were tuned on the same
manually transcribed development set (dev2010). As can be
seen in Table 2, only the filtered Gigaword corpus actually
helped improve the performance of the baseline system. In
accordance with these results, we used only this corpus as
the additional out-of-domain corpus for our final system.

Table 2: Baseline MT experiments with written corpora.

training corpora BLEU
dev2010 test2010

TED 28.8 33.2
TED + NC + EPPS 29.5 33.0

TED + NC + EPPS + GIGA 29.6 34.0
TED + GIGA 29.7 34.4

For the sake of speeding up the experiments with the
adaptation of the MT systems to the characteristics of the
speech data, only the TED corpus was used for training those
intermediate systems. Our final system, however, to which
the SOUL re-scoring was applied, made use of both TED
and the Gigaword data.

3.3. Narrowing the gap between ASR and MT

An important source of MT quality deterioration on ASR
output consists in various formatting differences between this
output and the written corpora used for the training of the
MT engine. One of the promising axes of improving the
speech translation quality is therefore to reduce the gap be-
tween the ASR output and the source part of the parallel cor-
pora. This goal can be achieved both by post-processing the
speech recognition output before translation and by modi-
fying the source part of the corpora used in MT training to
make them more alike. In this work, we have experimented
with two types of such processing: normalization of num-
bers and punctuation insertion. Other types of normalization
might of cause be considered, such as the normalization of
units of measurement, dates, acronyms etc.

3.3.1. Normalization of numbers

One inconsistency between the output of the ASR system
and the expected input of the MT system is the fact that the
speech recognition system produces the numbers spelled out,
whereas MT systems are trained on written texts where num-
bers are usually written in digits. In both cases, the choice
of the approach to number processing is optimal for the cor-
responding system: a fully spelled representation is closest
to the pronunciation (big numbers may correspond to several
pronounced words) and is thus convenient for ASR; digital

representation is best suited for MT since it is much easier to
translate to the equivalent digital representation on the target
side. For speech translation, however, the inconsistency in
number representations is one obvious source of the transla-
tion quality’s deterioration. To transform fully spelled num-
bers in the ASR output into digits, we used a rule-based algo-
rithm provided by LIMSI’s ASR system as part of the post-
processing to the main recognition system. It must be noted,
however, that the numbers in written texts and the numbers
produced via the above processing are not always the same.
On the one hand, the automatically produced digital forms
may contain errors, and on the other hand, human transcrip-
tions are not always consistent and can choose either to spell
out or not some of the numbers (e.g. 1/3rd vs. one-third). To
bring ASR output as close as possible to the expectations of
MT, we applied the number transformation to the source side
of the TED corpus. In order to do this, we first converted all
the digital numbers to text and then re-converted them to dig-
its using the same algorithm as for the post-processed ASR
output. A new MT system was then trained based on this
corpus (norm).

To evaluate the impact of the number normalization on
speech translation, we used the test set provided by the or-
ganizers (tst2010), for which we compared the translation
performance on manual transcriptions to the performance on
the automatic transcriptions produced by our baseline ASR
system (WER=17%). Table 3 compares the performance of
the baseline system to the performance of the system trained
and tuned on normalized corpora. As expected, on the ASR
output better results were obtained with normalization. How-
ever, the results on the manual transcriptions suffered a small
degradation which is most probably due to to the errors pro-
duced by the normalization processing.

Table 3: Experiments with number normalization.

training corpora normalization BLEU (tst2010)
auto manual

TED no norm 20.5 33.2
norm 21.0 33.0

3.3.2. Punctuation

Speech speech recognition systems do not generally produce
punctuation as part of their output. The LIMSI ASR sys-
tem makes it possible to add punctuation in a post-processing
step, but it only includes very basic punctuation marks, such
as commas and stop signs. The MT system, on the other
hand, is expected to produce fully punctuated text as its out-
put and is typically trained on punctuated sources. The per-
formance on the manually transcribed test data, that does not
contain any recognition errors, is nevertheless degraded dra-
matically if the punctuation is removed from the source side
of the test (BLEU=25.5, as compared to BLEU=33.0 for the
punctuated test, see Table 3).
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Possible solutions to this problem have been explored,
for example, in [22]. One solution is to build a new MT sys-
tem based on the training corpora with unpunctuated source
side: the system is thus trained to implicitly insert punctua-
tion as part of the general translation process (implicit punc-
tuation). Another solution is to produce automatic punctua-
tion for the source language and to insert some punctuation
marks to speech recognition output before translation (ex-
plicit punctuation in source): this approach has the advan-
tage of allowing to keep the MT system unchanged. Our
experiments with both approaches are shown in Table 4. We
trained a new MT system unpunctuated in source (implicit
punct), where we removed all the punctuation marks from
the source side of both training corpus (TED) and tuning
corpus (dev2010). This unpunctuated system was applied to
the normalized ASR output without punctuation in test. The
punctuated version of the TED MT system was applied to
the same test punctuated by one of our two punctuation sys-
tems. Both of these punctuation systems were based on MT
techniques and were trained on unpunctuated TED corpus as
source and the same corpus with punctuation in target. One
system used all the possible punctuations (all), whereas the
other only used simple unpaired punctuation: commas, stops,
colons, semi-colons, question and exclamation marks (main).
The implicit punctuation and as well as the explicit punctua-
tion with main marks achieve equivalent performance on test
corpus. The fact that main punctuation insertion yields in
better performance than all punctuation insertion can be ex-
plained by the fact that the paired punctuation marks (such as
quotes or parentheses) are often separated by several words
and are therefore much harder to predict correctly in the MT
framework. The data sparsity also contributes to the fact that
the insertion of all the types of the punctuation may add more
errors than correct predictions.

Table 4: Experiments with punctuation.

training corpora punct test BLEU (tst2010 auto)
TED (implicit punct) none 24.4

TED (man punct)
none 21.0

auto all 24.0
auto main 24.4

3.4. Adaptation of MT systems to ASR output

In addition to various surface differences between ASR out-
put and MT training corpora such as described above, the
most important source of difficulties for speech translation
are the errors and the irregularities present in speech recog-
nition output: if the source is degraded, the quality of trans-
lation is likely to suffer subsequently. It is to be expected,
however, that for some types of errors the translation qual-
ity could be improved if the training data for MT included
the errors produced by the recognizer, thus allowing for the
MT system adapt to the variation in the output of this specific

recognizer. This is why we experimented with an extra train-
ing corpus (TED auto) obtained by automatic transcription
of the speech signal of the talks present in TED training cor-
pus by our baseline ASR system. The corpus thus produced
was normalized as described above. Since both punctuated
and unpunctuated versions of the manual TED training cor-
pus produced similar results and for the sake of time, we used
only the unpunctuated version for these experiments so as to
quickly determine the impact of the ASR output in training.

Table 5 compares different configurations for training
corpora:

• TED manual transcription only

• TED auto transcription only

• TED manual and TED auto used separately (two trans-
lation tables)

• TED manual and TED auto used together (one transla-
tion table)

The source side of the development corpus (dev2010)
was composed of manual transcriptions for the first model,
of automatic transcriptions for the second model and of both
automatic and manual transcriptions for the last two models.

Using both corpora produces the best results probably
since it allows for the MT system to learn on both correct
and erroneous examples. The best performance is achieved
with one translation table.

Table 5: Adaptation to ASR output in MT training.

training corpora BLEU
(test2010 auto, no punct)

TED man only 24.4
TED auto only 24.2

TED man+auto (2 tables) 24.6
TED man+auto (1 table) 24.8

3.5. Final MT system configuration

Based on the results of all the experiments with speech trans-
lation described above, for the final systems we used two cor-
pora in training:

• TED man+auto (in one corpus)

• Gigaword (filtered)

Table 6 presents the results for these systems both with
and without punctuation in source. The performance of the
punctuated system (with ASR data re-punctuated by punct
main) proved to be slightly better, so this system was used for
the final step of the processing: SOUL NNLM and NNTM n-
best re-scoring. This table also reports the performance of the
final punctuated MT system on the test set transcribed with
the final ASR system adapted to TED data (WER=12.8%),
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as compared to the same test set transcribed with the base-
line ASR system (WER=17%). This shows the impact of
the ASR quality on the translation performance. We subse-
quently used this test set for the experiments with SOUL.

Table 6: Final MT system performance and the impact of the
ASR adaptation to TED data on the MT performance.

training corpora punctuation
BLEU

(test2010 auto)
ASR ASR

baseline final run
TED man+auto (1 table) no punct 24.8 -

+ GIGA no punct 25.0 -
punct main 25.5 27.7

3.6. SOUL models

Neural networks, working on top of conventional n-gram
back-off language models, have been introduced in [23, 24]
as a potential means to improve discrete language mod-
els. As in previous submissions in the WMT evaluation
(see [25] for instance), we took advantage of the recent pro-
posal of [26]. Using a specific neural network architecture,
the Structured OUtput Layer (SOUL), it becomes possible to
estimate n-gram models that use large vocabulary, thereby
making the training of large neural network models feasi-
ble both for target language models and for translation mod-
els [27]. Moreover, the peculiar parameterization of contin-
uous models allows us to consider longer dependencies than
the one used by conventional n-gram models, for instance
n = 10 instead of n = 4.

3.6.1. Description of model structure

SOUL language model is a feed-forward multilayer neu-
ral networks estimating word’s probability given its context
made of the n− 1 previous words (typically n = 10). While
this model is similar to neural probabilistic language models
introduced in [23], the output layer that predicts the word is
organized into a tree structure. This structured output layer
allows the model to predict words for large vocabulary appli-
cations.

SOUL translation models rely on a specific decom-
position of the joint probability P (f , e,a) of a sentence
pair, where f is a sequence of I reordered source words
(f1, ..., fI), and e contains J target words (e1, ..., eJ), and
a is an alignment between f and e. In the n-gram approach
to SMT [10, 11, 12] this segmentation is a by-product of
source reordering, and ultimately derives from initial words
and phrase alignments. In this framework, the basic trans-
lation units are tuples, which are analogous to phrase pairs,
and represent a matching u = (f, e) between a source phrase
f and a target phrase e.

The n-gram assumption decomposes the joint probability

into the products of tuples’ probabilities as follow:

P (f , e,a) =
L∏

i=1

P (ui|ui−1, ..., ui−n+1) (2)

However, as mentioned in [27], this decomposition implies a
large vocabulary of bilingual tuples, hence its generalisation
capability is limited due to data sparsity issues. As a remedy,
the n-gram probabilities in the right-hand side of (2) are fac-
tored by first decomposing tuples into source and target parts
(or phrases), and then considering each part as a word stream.
The decomposition process results in 4 word-factored bilin-
gual models as described in [27], each of which produces a
feature score that is added to the final system before SOUL
(Section 3.4).

3.6.2. Integration of SOUL models

Given the computational cost of computing n-gram probabil-
ities with neural network models, we resorted to a two-pass
approach: the first pass uses a conventional system to pro-
duce an N -best list (the N most likely hypotheses); in the
second pass, probabilities are computed by SOUL models for
each hypothesis and added as new features. Then the N -best
list is reordered according to a combination of all features
including these new features. In our experiments, 10-gram
SOUL models were used to rescore 300-best lists. Overall
system’s log-linear coefficients were optimised using k-best
Batch Margin Infused Relaxed Algorithm (KBMIRA) [28]
on the automatically transcribed development set.

3.6.3. Training

SOUL models are trained to maximise the likelihood. This
optimization is carried out using a mini-batch version of
Stochastic Back-propagation (see [24, 26] for more details).
However, given the computational cost of each training
batch, training corpora are usually resampled at each epoch:
instead of performing several epochs over the whole training
data, a different small random subset is used at each epoch.

To mitigate the impact of in-domain and out-of-domain
corpora, the target language model was trained using for each
epoch a set of n-grams of which 75% were sampled from
TED data, and the remaining 25% from Gigaword.

SOUL translation models were trained on bilingual tuples
constructed from the word alignments of training corpora’s
sentence pairs. The mixing of training corpora was more
complicated as TED corpus contains both manual and auto-
matic transcriptions. In an attempt to narrow the gap between
ASR and MT as mentioned in Section 3.3, we used TED auto
corpus along with TED manual to train our translation mod-
els. To separately evaluate the impact of each corpus, three
configurations were tested. The first two consisted in train-
ing models on TED manual and TED auto separately. In the
third configuration, a mix of TED data (manual and auto con-
catenated) and Gigaword was used, where 75% of n-grams
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Systems dev test
Before SOUL 23.7 27.7

Adding all 4 SOUL TMs
+ TMs TED manual 24.1 27.9
+ TMs TED auto 24.2 28.0
+ TMs mixing TED-GIGA 24.4 27.9
Adding all 4 SOUL TMs and SOUL target LM
+ TMs TED manual + LM 24.3 27.9
+ TMs TED auto + LM 24.3 27.6
+ TMs mixing TED-GIGA + LM 24.4 28.3

Table 7: Results of the reranking process with various added
feature functions. The first line indicates the result for the
best MT system before SOUL. The upper and lower parts of
the table show results of adding SOUL TMs and target LM
into this system.

used at each epoch were sampled from the former, and 25%
from the latter.

Table 7 presents results of adding SOUL features into the
best MT system. The performance is evaluated in terms of
BLEU scores on the automatically transcribed development
and test sets. As shown in the upper part of the table, the
models trained on TED auto yield slightly better results than
those trained on TED manual. It might be due to the fact
that hypotheses in the development and test sets were gener-
ated using source sentences automatically transcribed as de-
scribed previously, and hence are closer to TED auto’s bilin-
gual tuples. However, the use of SOUL target language model
gave gain only on the configuration trained on the mixed cor-
pora of TED and Gigaword; the best result shown in the last
line corresponds to the final system submitted for the evalu-
ation as our primary system.

4. Conclusions
In this paper, we described our submissions for the IWSLT
2014 speech translation task. Our contribution is twofold:
first, we investigated different approaches to adapt a stan-
dard speech recognition system to TED talks; then the differ-
ent components of the MT system were improved for a better
interaction with ASR output. The MT systems were trained
using our in-house translation system (NCODE). We experi-
mented with various techniques for bringing the ASR output
data and the expected MT input data format as close as pos-
sible. In particular, number normalization and punctuation
insertion both allowed to improve the translation quality over
the baseline system on ASR data. We also exprimented with
various configurations for including the ASR data as part of
the MT system so as to adapt this system to the errors and
other specific features of the speech recognition output.

Our best submission used both manual and ASR data
pooled together for building one translation table. This sys-
tem was augmented with the integration of continuous space
models in a n-best rescoring step. Surprisingly, the gains on

the ASR output test data were rather small as compared to
the improvement obtained on very similar task for text trans-
lation (see [29, 25]). Further analyses are required to better
explain these results.
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Abstract
This paper describes our automatic speech recognition sys-
tem for IWSLT2014 evaluation campaign. The system is
based on weighted finite-state transducers and a combina-
tion of multiple subsystems which consists of four types of
acoustic feature sets, four types of acoustic models, and N-
gram and recurrent neural network language models. Com-
pared with our system used in last year, we added additional
subsystems based on deep neural network modeling on filter
bank feature and convolutional deep neural network model-
ing on filter bank feature with tonal features. In addition,
modifications and improvements on automatic acoustic seg-
mentation and deep neural network speaker adaptation were
applied. Compared with our last year’s system on speech
recognition experiments, our new system achieved 21.5%
relative improvement on word error rate on the 2013 English
test data set.

1. Introduction
TED talks are presentations to audience with wide topics
related to Technology, Entertainment and Design (TED) in
spontaneous speaking style [1]. Automatically transcribing
TED talks with automatic speech recognition (ASR) tech-
nique is still a challenging task. The difficulties are due to
the large variations of TED speech caused by many factors,
for example, variations caused by disfluency, emotion, noise
distortions, as well as variations caused by accent and ages
of speakers. In this paper, we describe our ASR system for
the English TED ASR track of the 2014 IWSLT evaluation
campaign.

The system is a further development of our 2012 and
2013 ASR systems which utilized lots of state of the art tech-
nologies [2, 3]. An overview of our ASR system is depicted
in Figure 1. In this figure, there are several processing blocks.
The test TED talks were provided without any acoustic seg-
mentation information. For convenience of processing and
decoding, an automatic acoustic segmentation was first ap-
plied. Based on the segmentation, acoustic features were ex-
tracted. Next, decoding was applied on four types of acoustic
models to produce decoding lattices, and rescoring was used
on the N-best lists generated by the lattices. Based on the N-
best lists, a ROVER processing was used to get the first pass

ROVER result. Based on the first pass ROVER result, the
language model adaptation and acoustic model adaptation
were done. Then decoding and rescoring were done again
with the adapted LM and acoustic models. Furthermore, the
second pass ROVER was conducted. The adaptation, decod-
ing, rescoring, and ROVER were done for several rounds.

Compared with the system we used in last year, new con-
tributions are (1) refined acoustic segmentation algorithm;
(2) deep neural network (DNN) acoustic model trained based
on new types of acoustic features; (3) convolutional DNN
(CNN-DNN) acoustic model trained based on filter bank fea-
ture concatenating with pitch feature. Besides these main
changes, several other modifications were also added which
showed performance improvement.

The rest of this paper is organized as follows. Sections 2
and 3 introduce the acoustic modeling and the language mod-
eling. Section 4 describes the automatic acoustic segmenta-
tion algorithm. Section 5 introduces the decoding processing
which includes LM rescore and N-best ROVER procedures.
Experimental results as well as discussion of the results are
given in Section 6. Conclusion is given in Section 7 .

2. Acoustic Modeling
2.1. Training Corpus

Three types of data corpus were used in training the acous-
tic models (as shown in table 1). 81.1 hours of Wall Street
Journal (WSJ), 62.9 hours of HUB4 English Broadcast news
which obtained from the Linguistic Data Consortium, and
167.8 hours of processed 760 TED talks crawled from its
online web site published before 2011 (with SailAlign soft-
ware for extracting text-aligned acoustic segments). WSJ is
read speech, HUB4 is spontaneous broadcast news speech
and TED is lecture style speech.

2.2. Feature Extraction

Four types of acoustic feature sets were extracted to build
acoustic models. The first type of feature set is Mel-
frequency cepstral coefficient (MFCC), which was extracted
with a 25 ms Hamming window that was shifted at 10 ms
intervals. The MFCC feature consisted of 12 MFCCs, log-
arithmic power (log-power), and their first and second or-
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Figure 1: Overview of the NICT ASR system.

der derivatives. The dimensions of the acoustic feature vec-
tors were 39. Then 7 adjacent frames were concatenated
(3 on each side of the current frame) to make context de-
pendent feature vectors. By applying a linear discriminate
analysis (LDA), the concatenated feature vector was com-
pressed to 40 dimensions. The 40-dimension vector was fur-
ther decorrelated with a maximum likelihood linear transfor-
mation (MLLT). In addition, a feature space maximum likeli-
hood linear regression (fMLLR) was also applied in speaker
adaptive training (SAT) stage. The second type of acoustic
feature set is a perceptual linear predictive cepstrum (PLP)
feature, the same procedures as done on the MFCC feature
were applied. The third type of feature set is log Mel filter
bank feature or FBANK features. It has been shown to im-
prove the performance of DNN based acoustic modeling than
MFCC feature [4]. The fourth type of acoustic feature set is
combination of FBANK feature with tonal feature. Although
English is not a tonal language, it showed improvement in
DNN modeling if tone feature is incorporated as an addi-
tional feature in acoustic modeling [5]. In both the third and
fourth types of feature sets, the first and second time deriva-
tions of these features were utilized in acoustic modeling. In
addition, because these two types of feature sets were used
in different DNN architectures, their FBANK feature dimen-
sions were also different. This will be explained in acoustic
model training in next subsection.

2.3. Acoustic models and training

Four types of acoustic models were built in our system, they
were FBMMI, SGMM, DNN and CNN-DNN acoustic mod-
els. To train these models, we first trained a basic context
dependent triphone HMM model with GMM output proba-
bility. The final acoustic model has 7922 triphone tied states
with 160180 Gaussian components. For improving the ba-
sic model, we further applied feature space maximum like-
lihood linear regression (fMLLR) for speaker adaptive train-
ing. This SAT-HMM/GMM model was used as a baseline

for FBMMI, SGMM, DNN and CNN-DNN acoustic model
training.

The FBMMI is a discriminative training with feature
space boosted maximum mutual information (FBMMI) cri-
terion [6]. The subspace GMM (SGMM) model was trained
by clustering the Gaussians from the triphone HMM/GMM
model. In addition, the FBMMI was also conducted on
SGMM for discriminative training. The FBMMI and SGMM
acoustic models were trained by two types of feature sets,
MFCC and PLP. Therefore, four acoustic models were ob-
tained.

Two types of DNN architectures were used for acoustic
modeling. One is feedforward DNN (hereafter it is called
as DNN). Another is convolutional DNN in which the in-
put layer is with convolutional operator while other layers
are feedforward DNN (hereafter it is called as CNN-DNN).
In DNN training, a frame-based cross-entropy criterion was
first applied in the first stage, then a sequential discriminative
training based on a state level minimum Bayesian risk crite-
rion (sMBR) was adopted for the second stage training [7].
In CNN-DNN training, only the frame-based cross-entropy
criterion was used. For training the DNN and CNN-DNN,
different types of feature sets were used. For MFCC and
PLP feature sets, the DNN architecture was configured as:
300-2100*5-7922, i.e., input layer was with 300 neurons, 5
hidden layers with 2100 neurons for each, and 7922 neurons
in the output layer. The input layer feature was transformed
by LDA from 15 consecutive frames of either MFCC or PLP
feature (from SAT-HMM/GMM model). For FBANK fea-
ture used in DNN, 24 Mel filter banks were used (hereafter
as FBANK24 feature type). The DNN was configured as:
1080-2100*5-7922.

In CNN-DNN modeling, compared with DNNs, CNN re-
stricts the network architecture with local connections and
weight sharing so that it can explores local correlation in fea-
ture processing [8]. Our CNN-DNN has one convolutional
layer with convolution and polling operations. The config-
uration of the convolutional layer as: 128 filters with filter
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Table 1: Details of acoustic model training data
Corpus Hours Type Data
WSJ 81.1 Read LDC93S6B, LDC94S13B

HUB4 62.9 Broadcast LDC97S44, LDC98S71
TED 167.8 Lecture 760 talks (Before 2011)

size and shift as 9 and 1 for each. In the pooling layer, local
averaging and sub-sampling were performed to reduce the
resolution of the feature map and the sensitivity of the out-
put to input shifts and distortions. The pooling width and
shift was set to 2 and 2, respectively. The output from the
pooling layer was further processed with feedforward DNN
with 4 hidden layers (2100 neurons in each layer), and one
output layer (7922 neurons). In training the CNN-DNN,
FBANK feature with tone feature set was used. 40 Mel filter
banks and 3 dimensional tone features were used (hereafter
as FBANK40+Pitch feature type).

2.4. Speaker Adaptation for DNN

In our system, speaker adaptation on DNN AMs were ap-
plied. The adaptation was operated on the third hidden layer
of the DNNs based on our previous work [9]. The adapta-
tion data was selected based on word confidence from de-
coding results (confidence threshold 0.7 was chosen in our
study). Different from last year’s adaptation processing, the
adaptation data was selected based on the ROVER result. In
order to overcome the overtraining problem in adaptation, a
L2 regularization on the model parameters was utilized. 4
rounds adaptation were conducted on the DNN models. In
each adaptation, the learning rate was set to 0.001, the num-
ber of training epoches were set to 20.

3. Language Modeling

3.1. Training data

Table 2 shows the data for training language models. It con-
tains two categories of textual corpora that are allowed by
the IWSLT evaluation campaign. One is in-domain corpus
TED talk transcripts supplied by the IWSLT2014 committee,
another are out-of-domain corpora. For the out-of-domain
corpora, News Commentary V7 and Europarl V6 provided
by the IWSLT2014 committee were used for LM training
without selections, but English Gigawords and News Shuffle
were further selected for the training. All of these data were
normalized (or pre-processed) by using a non-standard-word
expansion tools [10], so that all those non-standard words
such as abbreviation, numbers etc, were converted to sim-
ple words. For examples, words ”CO2” and ”95%” were
converted to ”CO two” and ”ninety five percent.” Duplicated
sentences were removed during this normalization process.

Table 2: Training data of language models.
Category Corpus Tokens
In-domain TED Talks 3.2M

NewsCommentary V7 4.6M
Out-of Europarl V7 50.0M
domain English Gigawords 5th ed. 2.7G

News Shuffle 732.8M

3.2. Domain adapted n-gram LM

The first pass of speech decoding was performed using a
domain adapted n-gram LM. The adapted LM was built by
interpolating a in-domain n-gram and several adaptation n-
grams. The in-domain n-gram was constructed by using the
in-domain data, and the adaptation n-grams were constructed
by using the selected sentences from the out-of-domain cor-
pora. However, since there are many sentences in the out-of-
domain that are highly mismatched to the TED domain, these
sentences will be harmful to LM if they are added to train-
ing data. Therefore, we built adaptation LMs by selecting
adequate training sentences from two of the out-of-domain
corpora - English Gigawords and News Shuffle. Since the
News Commentary data and the Europarl are relative small,
no selection was conducted on them.

The sentence selection was based on a cross-entropy dif-
ference metric [11] which was biased towards sentences that
were both similar to the in-domain data and unlike the aver-
age of the out-of-domain data. Here, the similarity and un-
likeness were measured by the sentence entropy (or perplex-
ity) with respect to in-domain LM and out-of-domain LM,
respectively. Detailed description about this selection algo-
rithm can be referred in [12]. Finally, about 30.0M sentences
(560M tokens) from the English Gigaword data, and 7.6M
sentences (143.8M tokens) were selected.

Using the SRILM toolkit [13], the modified Kneser-Ney
smoothed n-grams (n=4) were constructed for in-domain LM
using the TED corpus, and for adaptation LMs accordingly
using the selected sentences, the News Commentary V7 data
and the Europarl V7 data. The domain adapted LM was
achieved by linearly interpolating these n-grams, with the de-
velopment set defined in the IWSLT evaluation campaign for
optimization. In all these training process, a vocabulary of
123K words from the CMU Pronunciation Dictionary [14]
and the TED corpus was used.

3.3. Topic adapted n-gram LM

The second pass of speech decoding was conducted using a
topic adapted LM constructed by the recognition results of
the first decoding pass. The sentence selection for the topic
adapted LM was conducted in the same way as for the do-
main adapted LM. The data sources for selection were still
the English Gigawords and the News Shffled, however, the
recognition results obtained from the first decoding pass were
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used as the seed data for selection. The sentence cross en-
tropy was measured between two n-gram LMs, one was built
by using recognition results of all talks in the first decoding
pass, another was built by using 2000 sentences randomly
selected from the resource data. Finally, 61.7M sentences
(246.7M tokens) were selected from the English Gigawords,
and 3.8M sentences (65.7M tokens were selected from the
News Shuffle. Two n-grams (n=4) were built by using these
sentences individually. The topic adapted LM was then con-
structed by linearly interpolating these two LMs, other two
LMs built respectively by the News Commentary and Eu-
roparl, (for these two corpora, no sentence selections are con-
ducted with them), and the in-domain LM.

3.4. RNNLM

In this system, N-best list rescoring was adopted and per-
formed using a recurrent neural network(RNN) LM [15]. In
our RNN, the number of units in the hidden layer and classes
in the output layer were 480 and 300, respectively. Back-
propagation Through Time (BPTT) with truncated time order
5 was used in RNN training. The training data for the RNN
was the same as that for the domain adapted n-gram LM de-
scribed above. To decrease the training time, only one-tenth
of the selected out-of-domain sentences were used for the
training.

4. Automatic Segmentation
In this year’s evaluation, the whole TED talks in the test
data set were provided without any acoustic segmentation
information. For convenience of decoding and rescoring,
acoustic segmentation was first done. A combination method
of a voice activity detection (VAD) algorithm and acoustic
event detection (AED) algorithm was utilized for this pur-
pose. In designing the VAD algorithm, signal power en-
ergy and spectral centroid features were used. In AED, five
GMMs corresponding to five acoustic events (speech, mu-
sic, applause, laugh and background noise) mostly appeared
in lecture speech were trained in this study. MFCC feature
was used in GMM training, and the diagonal GMM consists
16 mixtures was used in AED. The acoustic segmentation
was done based on merging the detection results of VAD and
GMM. In merging, a hang-over scheme with minimum du-
rations of non-speech event as 800ms, and minimum dura-
tion of speech event as 160ms was applied. Based on the
segmented utterances, the feature extraction, decoding and
ROVER were carried out in recognition experiments.

5. Decoding and ROVER
5.1. Decoding System

Two types of WFST-based decoders were used. One is Kaldi
decoder, the other is NICT SprinTra decoder. The Kaldi
decoder was used for FBMMI and SGMM acoustic model
based decoding, and SprinTra decoder was utilized for DNN

and CNN-DNN acoustic model based decoding.

In decoding with Kaldi decoder, a small 4-gram LM was
first used to produce word lattice. Then a large 4-gram LM
was applied for rescoring on the word lattice. For improving
the performance, the RNN LM was further applied on the
N-best list for rescoring. In decoding with NICT SprinTra
decoder, the large 4-gram LM was directly used. Based on
the decoding word lattice, RNN LM was also used on the
N-best list for rescoring.

5.2. N-best ROVER

A N-best recognizer output voting error reduction (ROVER)
algorithm was applied to combine all the subsystems for
further improving the performance. This year, subsystems
with four types of acoustic models (FBMMI, SGMM, DNN
and CNN-DNN) and four types of feature sets (MFCC, PLP,
FBANK24, FBANK40+Pitch) were combined in ROVER
processing. For each subsystem, 50-best lists from 4-gram
LM and RNN LM rescoring processing were used. In
ROVER, the combination weights were selected based on our
experimental results on the development data set.

6. Experimental Results

6.1. DNN Speaker Adaptation

The algorithm of speaker adaptation used in this year is sim-
ilar to last year’s system. But the adaptation data selection is
different from last year’s system. In last year’s system, the
adaptation data set was picked up based on the DNN decod-
ing result. Considering that ROVER result is always better
than one of the DNN decoding result, the adaptation data was
selected based on the ROVER result in this year. For compar-
ison of the two adaptation data selection methods, we showed
the results in Figure 2. The decoding/rescoring results are
also included for comparison. In our 2013 system, after the
first pass ROVER, topic adaptation on LM was conducted.
With the adapted LM, we could obtain 0.4% improvement
for both 2011 and 2012 test data sets on DNN based decod-
ing. Then the adaptation data was selected based on this
DNN decoding result. In this year, we simply changed the
adaptation data selection method based on word confidence
calculated in the ROVER step. From the decoding results,
0.7% and 0.9% improvements were obtained for 2011 and
2012 test data sets, respectively. With this new process, our
speaker adaptation on DNN can be done for multiple rounds
for obtaining better performance. Table 3 shows the results
of N-rounds DNN speaker adaptation process. The results
showed that consistent improvements were obtained with 4-
rounds DNN adaptation for each feature set separately. How-
ever, no further improvement was obtained for ROVER result
with fifth round adaptation.
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Figure 2: The adaptation process and evaluation results
(WER %) of 2013, 2014 system. The feature of decod-
ing/rescoring results are MFCC, The ROVER consists of FB-
MMI, SGMM, DNN acoustic models with feature MFCC
and PLP.

Table 3: Contribution of N-rounds adaptation; Decod-
ing/rescoring results are listed for DNN with feature MFCC,
PLP and FBANK; The ROVER consits of all the subsystems.

subsystem MFCC PLP FBANK ROVER
DNN-baseline 16.0/14.8 16.3/15.3 15.2/14.6 12.7

1st round 12.3/11.8 12.3/11.9 12.7/12.2 11.6
2nd round 11.7/11.4 11.7/11.4 11.9/11.6 11.2
3rd round 11.5/11.3 11.4/11.2 11.6/11.4 11.1
4th round 11.3/11.2 11.3/11.1 11.4/11.3 11.1

6.2. Searching Beam and ROVER Weights

Increasing the searching beam width in decoding always
helps to improve the performance but at the cost of increas-
ing searching time. In our experiments, we set beam width
to 13 (the same as in last year) for both Kaldi and SprinTra
decoders in the first few steps of decoding. In the last DNN
adaptation step, the beam width was set to 17 which resulted
in 0.1% improvement in the WER.

In ROVER processing, the combination weights were
set as 1:1:2 for FBMMI, SGMM and DNN in last year.
After adding the DNN-FBANK24 and CNN-DNN acous-
tic model based subsystems, the combination weights were
re-investigated based on the development data set. Differ-
ent combination weight sets were set for ROVER: 1:1:3:3
for FBMMI, SGMM, DNN, CNN-DNN for the first pass
ROVER and 1:1:7:1 for N-round pass ROVER (N=2,3,4,5).

6.3. Contributions of Subsystems

Table 4 shows the results on 2013 test data set with different
combinations of subsystems in the first pass ROVER. With

Table 4: Contribution of each subsystems(first pass
ROVER); data set: 2013 test data set

subsystem sys1 sys2 sys3 sys4 sys5 sys6 sys7 sys8
FBMMI © © © © ©
SGMM © © © © ©

DNN-mfcc © © © © © © ©
DNN-plp © © © © © © ©

DNN-fbank © © © ©
CNN-DNN © © ©
WER(%) 18.1 14.5 13.8 13.4 13.1 13.1 12.9 12.7

Table 5: Contribution of each subsystems(the fifth pass
ROVER), with topic adapted LM and speaker adaptation for
DNN models; data set: 2013 test data set

subsystem sys1 sys2 sys3 sys4 sys5 sys6 sys7 sys8
FBMMI © © © © ©
SGMM © © © © ©

DNN-mfcc © © © © © © ©
DNN-plp © © © © © © ©

DNN-fbank © © © ©
CNN-DNN © © ©
WER(%) 17.8 11.1 11.1 11.0 11.1 11.1 11.1 11.0

the subsystems used in last year (sys3), we obtained 13.8%
WER. 1.1% absolute improvement was obtained after adding
the DNN-FBANK24 and CNN-DNN based subsystems in
ROVER. Also from this table, we can see that although DNN
and CNN-DNN subsystems obtained quite low WER, taking
the FBMMI and SGMM based subsystems in ROVER pro-
cessing still helped to improve the performance (about 0.2%
improvement).

Table 5 shows the results of the fifth pass ROVER step.
In this step, the LM and DNN acoustic model were adapted
with the methods described in the previous section. Different
to the first pass ROVER result, we obtained almost the same
result by only combing DNN acoustic model based subsys-
tems with or without the FBMMI, SGMM and CNN-DNN
based subsystems.

6.4. Summary of Results

Table 6 shows the summary of our ASR system comparing
with last year’s official best rest for 2011, 2012, and 2013
test data sets. Compared to last year’s official result, this year
ASR approach achieved a better performance. The automatic
segmentation, combination of new subsystems in ROVER,
and multi-rounds speaker adaptation contributed the most
of the improvements. After 4-rounds speaker adaptation on
DNN acoustic models, there was no further improvement in
final ROVER processing. For this year’s test set, we obtained
8.4% WER.
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Table 6: The final results (WER %) of the test sets: 2011,
2012, 2013 and 2014.(* means using NICT’s references)

tst2011 tst2012 tst2013 tst2014
Official best(2013) 7.9 8.6 13.5 -

NICT 2014 6.5* 7.0* 10.6 8.4

7. Conclusions
In this study, we describe our ASR system for the IWSLT
2014 evaluation campaign. Our ASR system consists of
four types of acoustic models (FBMMI, SGMM, DNN and
CNN-DNN), four types of acoustic features (MFCC, PLP,
FBANK24 and FBANK40+Pitch), and two types of LMs
(N-gram and RNN). Several improvements were conducted,
such as new acoustic models, automatic segmentation, and
DNN speaker adaptation. The results of our proposed ap-
proaches demonstrate a better performance than that of last
year.
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Abstract
In this paper, we present the KIT systems participating
in the TED translation tasks of the IWSLT 2014 ma-
chine translation evaluation. We submitted phrase-based
translation systems for all three official directions, namely
English→German, German→English, and English→French,
as well as for the optional directions English→Chinese and
English→Arabic. For the official directions we built systems
both for the machine translation as well as the spoken lan-
guage translation track.

This year we improved our systems’ performance over
last year through n-best list rescoring using neural network-
based translation and language models and novel preorder-
ing rules based on tree information of multiple syntactic
levels. Furthermore, we could successfully apply a novel
phrase extraction algorithm and transliteration of unknown
words for Arabic. We also submitted a contrastive system for
German→English built with stemmed German adjectives.

For the SLT tracks, we used a monolingual translation
system to translate the lowercased ASR hypotheses with all
punctuation stripped to truecased, punctuated output as a pre-
processing step to our usual translation system.

1. Introduction
The Karlsruhe Institute of Technology participated in
the IWSLT 2014 Evaluation Campaign with systems for
English→German, German→English and English→French,
covering all official directions, as well as English→Chinese
and English→Arabic. All systems were submitted for the
machine translation (MT) track, with additional systems
for the spoken language translation (SLT) track in the of-
ficial directions. This year we also submitted three con-
trastive systems in order to directly compare the impact
of some of our new models. For English→German we
focused on the impact of rescoring on our system, for
German→English we submitted a contrastive system that
was built with stemmed adjectives on the German source
side, and for English→Arabic we compared our alternative
phrase table pruning method to the standard approach.

We focused our efforts on five components this year.
The handling of ASR input was further refined (Section 3),
and we newly implemented Restricted Boltzmann Machine

(RBM)-based translation and language models for rescoring
(Section 4), an alternative method to prune the phrase table
(Section 5), a method to transliterate unknown words into
Arabic (Section 6) and multiple level tree-based (MLT) re-
ordering rules (Section 7).

The following section briefly describes our baseline sys-
tem, while Sections 3 through 7 present the different com-
ponents and extensions used by our phrase-based translation
systems. After that, the results of the different experiments
for the five language pairs we participated in are presented in
Section 8 before we summarize our findings in Section 9.

2. Baseline system
All our systems are phrase-based systems. With the excep-
tion of the English→Chinese system, they are trained on the
provided EPPS, NC and TED corpora. We also used the
provided Common Crawl corpus for English↔German and
Giga for English→French. For the monolingual training data
we used the target side of all bilingual corpora as well as
the News Shuffle corpus. Additionally, we included the Gi-
gaword corpus for English→French and German→English.
The English→Chinese system setup is described in Sec-
tion 8.5.

Before training and translation, the data is preprocessed.
During this phase, exceedingly long sentences and sentence
pairs with a large length difference are discarded from the
training data. We normalize special dates, numbers and sym-
bols and smart-case the first letter of every sentence. For
German→English, we split up compounds [1] on the source
side of the corpus. Since the Common Crawl and Giga
English→French corpus are very noisy, we trained an SVM
classifier to filter them as described in [2].

After preprocessing, the parallel corpora are word-
aligned using the GIZA++ Toolkit [3] in both directions.
The resulting alignments are then combined using the grow-
diag-final-and heuristic. The phrases are extracted using the
Moses toolkit [4] and then scored by our in-house parallel
phrase scorer [5]. Phrase table adaptation combining an in-
domain and out-of-domain phrase table is performed as de-
scribed in [6]. All translations are generated using our in-
house phrase-based decoder [7].

Unless stated otherwise, we used 4-gram language mod-
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els with modified Kneser-Ney smoothing, trained with the
SRILM toolkit [8] and scored in the decoding process with
KenLM [9]. In addition to common word-based language
models, we used two token-based language models. The
bilingual language model is used to increase the bilingual
context during translation beyond phrase boundaries as de-
scribed in [10]. A token consists of a target word and all its
aligned source words. As a second token language model,
we use a cluster language model based on word classes. This
helps alleviate the sparsity problem for surface words by re-
placing every word in the training corpus with its cluster ID
calculated by the MKCLS algorithm [11].

We use two main reordering models in our systems.
The first consists of automatically learned reordering rules
based on POS sequences [12] and syntactic parse tree con-
stituents [13, 14] and performs source sentence reordering
according to target language word order [15, 16, 17]. The re-
sulting reordering possibilities for each source sentence are
then encoded in a lattice. The second model is a lexicalized
reordering model [18] which stores reordering probabilities
for each phrase pair.

As an additional model, we use a Discriminative Word
Lexicon (DWL) using source context features as described
in [19].

We tune our systems using Minimum Error Rate Training
(MERT) against the BLEU score as described in [20].

3. Preprocessing for speech translation
A conventional automatic speech recognition (ASR) system
generates a stream of recognized words without punctuation
marks or reliable case information. Therefore, when we use
the ASR output as input for our MT system, it does not fit
the style and format of the training data. In order to perform
special preprocessing on the SLT test data, we use a mono-
lingual translation system as presented in [21]. The system
inserts punctuation marks and corrects case information, so
that there is less divergence between the MT training data
and the SLT input data. As sentence boundaries are already
given in the test sets, we leave them as they are but predict
other punctuation marks within the segment. This prepro-
cessing will be denoted as Monolingual Comma and Case
Insertion (MCCI).

For building the systems, we took the preprocessed
source side of the parallel training data. We remove all punc-
tuation marks from the data and insert a final period at the
end of each line. In addition to this, all words are lowercased.
This data is used as the source side of our monolingual trans-
lation systems. For the target side of the monolingual trans-
lation system, we keep the punctuation marks as well as case
information, so that the “translation” of our MCCI system
consists of inserting punctuation marks and correcting case
information.

We built an MCCI system for English and German
and applied it to all three official SLT track directions
English→German, German→English and English→French.

4. n-best list rescoring
We perform additional experiments to use a neural network
language and translation model in n-best list rescoring.

We train an 8-gram Restricted Boltzmann Machine
(RBM)-based language model [22] on the in-domain TED
corpus. The language model uses 32 hidden units and a
shared word representation with 512 dimensionsUnigram
sampling is applied as described in [23].

In addition, we use an RBM-based translation model in-
spired by the work of Devlin et al. [24]. The RBM models
the joined probability of 8 target words and a set of attached
source words. The set of attached source words is calculated
as follows: We first use the the source word aligned to the
last target word in the 8-gram. If this does not exist, we take
the source word aligned to the nearest target word. The set of
source words consists then of this source word, its previous
5 source words and its following 5 source words.

We create this set of 8 target and 11 source words for
every target 8-gram in the parallel in-domain TED corpus.
In rescoring, we then calculate the free energy of the RBM
given the 8-gram and its source set as input. The sum of all
free energies in the sentence is used as an additional feature
for rescoring.

The 300-best list of the test set is then rescored using the
additional features. In order to train the weights for the orig-
inal features as well as the RBM-based models, we use the
ListNet algorithm [25]. We use stochastic gradient descent
to find the best weights and use batched updates with a batch
size of 10.

5. Alternative phrase table pruning
For efficiency reasons, we always perform a phrase table
pruning before decoding. Basically, we use a log-linear
model with some a-priori fixed weights in order to rank the
different phrase table entries associated with a given source
n-gram. The n-best entries are then selected (n being a
fixed integer). In the Arabic system, we experimented with a
slightly different model in order to rank the entries. The first
difference to our standard is that the different features are
pre-normalized. Based on other experiments (not reported
in this paper), the ℓ3-normalization is the best suited for this
task. That is, each feature value is divided by the cubic root
of the sum of all the values raised to the power of 3.

Another difference resides in the fact that the ranking is
based on the distance between the phrase table entries and
a reference entry. The latter is obtained by combining the
maximum scores of the different features in one entry. Based
on the same aforementioned experiments, we selected the
Jensen-Shannon distance measure for this task [26].

6. Arabic transliteration
In most cases, untranslated words break the harmony of the
translation into a language which uses a different scripting
(e.g. English into Arabic.) Therefore, it is more conve-
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Figure 1: Examples of trivial correspondences

nient to transliterate those untranslated words, as they are
unlikely to hurt the system performance further. Our translit-
eration is mostly similar to the character-based translation in
its transliteration part [27]. It is consequently a statistical
phrase-based translation based on unigram characters.

The corresponding training data of this system is mainly
a subset of the word pairs obtained from the aligned corpora
(TED and UN). First, the Arabic word of each aligned pair
is roughly transliterated into English, using only trivial cor-
respondences (see Fig. 1 for an example). The Levenshtein
distance ratio is then computed between the resulting rough
transliteration and the English word. Finally, we retain only
pairs with ratios higher than a certain threshold (our thresh-
old was empirically set to 0.5).

7. Multi-level tree reordering rules
For our English-Chinese translation we applied a novel rule-
based preordering approach [28], which uses the tree infor-
mation of multiple syntactic levels. This approach extends
the tree-based reordering [17] from one level into multiple
levels, which has the capability to process complex reorder-
ing cases.

Reordering patterns are based on multiple levels of the
syntax tree. Figure 2 illustrates how the reordering patterns
are detected. The detection starts from the root node of the
syntax tree, goes downwards multiple levels and uses the
nodes in these levels to detect the reordering pattern. In this
example, the nodes that are used for detecting the reorder-
ing pattern are colored gray and have an italic font. The leaf
nodes in the syntax tree are the words in the sentence. Ac-
cording to the alignment information, the node labeled with
NP should be moved to the first place in the translation and
the node labeled with IN of needs to be moved to the second
place in the translated sentence. So from the root node with
a search depth of 3, the following reordering pattern can be
found:

NP ( CD0 NP ( NP ( JJ1 NNS2 ) PP ( IN3

NP4 ) ) ) -> NP IN CD JJ NNS

-> 4 3 0 1 2 (alternative with index)

The algorithm for rule extraction detects the reordering
patterns from all nodes in the syntax tree and it goes down-
wards for any number of levels, until it reaches the lowest
level in the subtrees. The probability of the reordering pat-
terns are calculated based on the frequency of their occur-
rences in the training corpus. In addition, reordering patterns
that appear less often than a threshold are ignored in order to

NP

CD
ten

NP

NP

JJ
big

NNS
advantages

PP

IN
of NP

JJ
peaceful

NN
reunification

和平 统一 的 十 大 好处

Figure 2: Detection of reordering pattern from multiple syn-
tactic levels

prevent too concrete rules lacking generalization capability
and overfitting.

When applying the rules prior to translation, the syntax
tree is traversed by depth first search from the root of each
subtree to its leaves. If a rule can be applied for a subtree at
a given level, a new path for this reordering will be added to
the word lattice for decoding. As long as rules can be applied
on a subtree for a certain depth, the rules are applied and the
search for rule application on this subtree stops.The search
continues on the next subtree.

This multiple level tree-based (MLT) reordering rules can
be combined with other types of reordering rules. This is
done by combining the generated paths from different rules
into one word lattice.

8. Results
In this section we present a summary of our experiments for
both the MT and SLT tracks in the IWSLT 2014 evaluation.
All the reported results are case-sensitive BLEU scores cal-
culated on the provided development and test sets.

8.1. English→German

Table 1 shows the development stages of the
English→German system. The baseline translation system
uses two reordering models. First, in preprocessing, different
possible source reorderings are encoded in a lattice. We used
short-range and long-range POS-based reordering rules as
well as tree-based rules. Secondly, a lexicalized reordering
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model on the phrase level is used. The phrase table is
adapted by combining two phrase tables, one trained on all
training data and one trained only on the TED in-domain
corpus. Furthermore, the translation process is modeled
using a bilingual language model trained on all parallel
data and a discriminative word lexicon trained on the TED
corpus. The DWL uses source context features. Finally, five
language models are used. Three are word-based models,
the first of which is trained on all available German data.
The second one is trained only on the TED corpus. Finally,
we use a word-based model trained on 5M sentences chosen
through data selection [29]. In addition, a 9-gram POS-based
language model and a 9-gram cluster language model using
1000 MKCLS classes are used. Afterwards, we rescored
the system using the weights trained using the ListNet
algorithm described in Section 4. The rescoring was trained
on the test2010 and test2011 data and dev2010 was used as
a cross-validation set. This results in an improvement of
0.3 BLEU points. Then we added an RBM-based language
model and an RBM-based translation model. We could
improve by using the RBM-based translation model by 0.4
BLEU points, reaching the best BLEU score on test2012
with 24.31 BLEU points. This system was submitted as our
primary system for English→German. The baseline system
without rescoring was submitted as a contrastive system.

System Dev Test
Baseline 27.3 23.67
Rescoring - 23.97

RBMLM - 23.94
RBMTM - 24.31

Table 1: Experiments for English→German (MT)

8.1.1. SLT track

Table 2 shows the translation quality of the individual system
components. First we used the MT system and tested it on the
SLT test set dev2010. After adding inter-sentence punctua-
tion marks to the ASR hypothesis using the MCCI approach,
we could improve by 1.3 BLEU points. Afterwards, we also
used the ListNet-based rescoring for this task. This time we
used only test2010 as a training set and test2011 as our cross-
validation set. This improved the translation quality by 0.1
BLEU points. Finally, we added the RBM-based language
model and translation model. This gave additional improve-
ments of 0.1 BLEU points. We submitted the MCCI system
as a contrastive system and the system using RBMLM and
RBMTM in rescoring as our primary one.

8.2. German→English

Table 3 presents the results of our experiments for
German→English. Our baseline system already incorporates
a number of advanced models. Reordering is done using both

System Dev Test
Baseline 27.3 17.57
MCCI - 18.83

Rescoring - 18.91
RBMLM - 19.02
RBMTM - 18.96
RBMLM+TM - 19.01

Table 2: Experiments for English→German (SLT)

POS-based preordering rules as well as a lexicalized reorder-
ing model. We adapted the in-domain and background phrase
tables using the union candidate selection method. The sys-
tem also includes a DWL trained on the in-domain data and
five language models. In addition to the large background
language model trained on all available English data, our
baseline uses an in-domain language model, a background
and in-domain bilingual language model, as well as a 9-gram
in-domain cluster language model trained with 100 word
classes. If we extend the preordering rules to include rules
derived from parse trees, we can achieve a slight gain in
BLEU. While the development score stays almost the same,
we accomplish an improvement of nearly 0.3 BLEU points
on the test data by extending the DWL to include source con-
text. Training the DWL on n-best list data results in a similar
gain in BLEU points yet again. We can further improve the
score by applying the preordering rules learned from parse
trees recursively. As our final model, we included a language
model trained on on data automatically selected using cross-
entropy differences [29]. We selected the top 10M sentences
to train the language model. This leads to our final score of
31.98 BLEU points, almost 1 BLEU point over our baseline.

System Dev Test
Baseline 38.57 31.01
+ Tree Rules 38.79 31.04
+ DWL Source Context 38.78 31.32
+ DWL n-best List 38.86 31.63
+ Recursive Rules 38.92 31.71
+ Data Selection 39.03 31.98

Table 3: Experiments for German→English (MT)

8.2.1. Adjective stemming

Based on the system performing best in the previous
experiment, we also submitted a contrastive system for
German→English that employs stemming of adjectives.

Since German is a morphologically rich language, we are
dealing with many surface forms. This creates data spar-
sity problems, as every surface form is treated as a distinct
word in German. When translating into English, some of
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System Dev Test
Primary 39.03 31.98
Stemmed 39.22 31.68

Table 4: Contrastive system for German→English (MT)

the information encoded in inflections such as gender or case
may be discarded. However, stemming the whole German
corpus hurts translation since too much information is lost.
We therefore experimented with only stemming adjectives,
which in German can have five different suffixes depending
on the gender and case. The stemming was performed on the
preprocessed files before compound splitting. The files were
tagged with the TreeTagger [12] and the RFTagger [30]. We
based our decision when and how to stem on the fine-grained
tags output by the RFTagger. We only stemmed words tagged
as an attributive adjective, since they are inflected in Ger-
man. If the word as tagged as a comparative or superlative,
we manually removed the inflected suffix in order to main-
tain the comparative nature of the adjective. For all other
adjectives, we used the stem output by the TreeTagger. After
stemming, compound splitting was applied as described in
Section 2.

We then trained a new alignment and phrasetable on the
stemmed corpora. Previous experiments had shown that us-
ing the stemmed phrasetable in conjunction with the un-
stemmed one gave better results than forcing the system to
use the stemmed variant alone. However, our best system
includes a DWL, biLM and cluster LM, which cannot be ap-
plied to the stemmed phrases in a straightforward manner.
We therefore decided to unstem our phrasetable given the
stems seen in the dev and test data. We looked at all the stem
mappings from the development and test data and compiled
a stem lexicon, mapping the surface forms observed in the
Dev/Test data to their corresponding stems. We then applied
this lexicon in reverse on our phrase table, in effect duplicat-
ing every entry containing a stemmed adjective with the in-
flected form replacing the stem. For translation we concate-
nated the default phrase table and the stemmed phrase table
and combined the features log-linearly. This way our sys-
tem was able to learn a weighing of the phrase scores during
MERT. The resulting scores are reported in Table 4. While
the stemmed system performs worse on the test data accord-
ing to BLEU score, it does outperform our primary system
on the development data. Using the stemmed system, we are
able to translate seven adjectives we were not able to trans-
late with our primary system. We therefore decided to submit
our stemmed system as a contrastive system to fully evaluate
our system’s performance.

8.2.2. SLT track

Table 5 gives an overview of our systems for
German→English SLT. As a baseline for the spoken

language translation task, we used our best-performing sys-
tem from the MT task. Applied to the ASR transcripts with
only standard preprocessing, this gives us a baseline of 16.86
BLEU points. We can increase this score by nearly two
BLEU points simply by adding a final period to every ASR
segment. This shows that punctuation greatly influences
the performance of our system. When we apply the more
sophisticated MCCI system for punctuation and true casing
of the test data, we achieve a similar improvement over the
previous system. The last 0.2 BLEU points are gained by
re-optimizing the system on development data that has been
run through the MCCI system, resulting in our final system.

ASR Adaptation Dev Test
Baseline 39.03 16.86
+ period - 18.79
MCCI - 20.59
+ dev MCCI 35.79 20.79

Table 5: Experiments for German→English (SLT)

8.3. English→French

Table 6 summarizes the experiments performed for this di-
rection.

The translation model of the baseline was built from
TED, EPPS, NC, and Common-crawl corpora. It uses short-
range POS-based reordering rules trained on TED, EPPS,
and NC. It is also adapted to an in-domain translation model,
exclusively trained on the TED corpus, using the union can-
didate selection method. In addition, 5 language models are
used, 3 of which are conventional word-based LMs. One
of the remaining LMs is a bilingual LM and the other is a
cluster-based LM. The word-based LMs are trained on the
French part of the parallel data, the monolingual data, and
the union of all the French data respectively. The cluster-
based LM is 4-gram trained on TED using 500 classes.

After that, we experimented with two different DWL
models. The first small DWL was trained on the TED cor-
pus only. It improves the score on Test by 0.15 BLEU points
while its effect on Dev is negligible. The second model is
larger. It was trained on EPPS and NC in addition to TED.
With the large DWL, the gain is much more important: 0.2
BLEU points on Dev and 0.4 BLEU points on Test. For our
submission we used this last configuration.

System Dev Test
Baseline 40.17 34.12
With small DWL 40.19 34.27
With large DWL 40.40 34.66

Table 6: Experiments for English→French (MT)
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8.3.1. SLT track

As a baseline for the SLT track, we used our best performing
English→French MT system on the automatically punctu-
ated and cased version of the SLT input. We experimented
with different ways of tuning the SLT system. These experi-
ments are shown in Table 7.

The baseline uses all the models mentioned in the pre-
vious section (Section 8.3) except the cluster-based LM and
DWL. In this configuration, both Dev (Dev2010) and Test
(Test2010) sets were automatically punctuated and cased
with MCCI. We then translated the test set with a compara-
ble MT system without retuning on the punctuated Dev. This
MT system was also tuned on the Dev2010 (on its text ver-
sion though) and to our surprise this outperforms the baseline
by almost 0.7 BLEU points. We could even get an additional
gain (more than 0.3 BLEU), by tuning on the same MT tun-
ing set (Test2011). By translating the test set with our final
MT system (adding the cluster-based LM and the DWL to
the baseline), the performance of the system was boosted by
an additional 0.7 BLEU points. This final system was used
in our submission.

System Dev Test
Baseline 22.53 23.35
MT tuned - 24.03
MT tuned (2011) - 24.38
+ DWL + clusterLM - 25.05

Table 7: Experiments for English→French (SLT)

8.4. English→Arabic

The raw data provided for this pair was processed similarly
to our English→Arabic system last year [31]. We show the
effect of the two main extensions for this year’s submission
in Table 8. The baseline’s translation model is built by per-
forming adaptation on two models. The first is trained on
all parallel data (UN and TED) and the other is trained on
TED only. It integrates a bilingual LM and a cluster-based
LM (with 500 classes), and 4 more word-based LMs. Three
of the word-based LMs were respectively trained on the pro-
vided corpora (TED, UN, and Giga), and the last one incor-
porates all Arabic data. We used the alternative pruning with-
out retuning, which gave us a gain of 0.2 BLEU points. The
transliteration of the untranslated words however has an un-
noticeable effect (0.01). We decided to include it in our sys-
tem since it is unlikely to hurt the system as it is applied only
to untranslated words. The primary system we submitted ap-
plied the alternative pruning and the transliteration, while the
contrastive one used our standard pruning and transliteration.

System Dev Test
Baseline 15.98 7.71
+ Pruning - 7.91
+ Transliteration - 7.92

Table 8: Experiments for English→Arabic (MT)

8.5. English→Chinese

This year we also participated in the text translation task
of English→Chinese. There are four novel methods ap-
plied in this year’s system. First we have applied the new
MLT reordering model as described in Section 7. Sec-
ondly, we added the ECI corpus (LDC94T5) to train the lan-
guage model. Thirdly we tuned the system with the data set
Test2011 and tested it with Test2012. Last but not least we
built the system based on Chinese words instead of on Chi-
nese characters.

The system is trained on the bilingual TED and filtered
UN corpora. Since the UN corpus is document-aligned,
we performed sentence alignment using the Kuhn–Munkres
(KM) algorithm [32]. For each sentence pair, we used the
number of aligned word pairs which occur in a dictionary
(corpus LDC2002L27) as the weight for the KM algorithm.
We then set a threshold and selected the 30k best-matching
sentences for training.

The language models are trained on the monolingual
TED, ECI, Google n-grams and the target side of the whole
UN data. The Chinese target side is segmented with the Stan-
ford word segmenter1.

Table 9 shows the improvements step by step. We re-
port not only the BLEU score on the words (Testw), but also
the score on the Chinese characters (Testchar). Briefly, the
reordering models and adaptation have given the main con-
tribution to the improvement of translation quality. The base-
line is a monotone translation with 6-gram language model.
We have used the POS-based long-range reordering and the
MLT reordering model in combination. The MLT reordering
model yields a consistent improvement of about 0.3 BLEU
points over the long-range reordering model. We use the
TED corpus as the in-domain data to adapt the phrase ta-
ble and language model. This adaptation on the TED corpus
improves the results up to about 0.7 BLEU points. We have
added three more language models besides the basic 6-gram
one. google1980LM is a 5-gram language model trained on
the Google n-grams of the 1980s. We have also tried to use
all the Google n-grams. However, it does not help to use
more data. BiLM is a 4-gram bilingual language model and
clusterLM is a 4-gram cluster-based language model.

1http://nlp.stanford.edu/software/segmenter.shtml
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System Devw Testw Testchar

Baseline 13.73 12.07 19.18
+ POS Reordering (long) 14.08 12.24 19.34
+ MLT Reordering 14.34 12.57 19.68
+ Adaptation 14.93 13.34 20.65
+ google1980LM 15.13 12.67 20.02
+ BiLM 15.20 12.95 20.32
+ clusterLM 15.18 13.58 20.88

Table 9: Experiments for English→Chinese (MT)

9. Conclusions
In this paper, we presented the systems with which we par-
ticipated in the TED tasks of the IWSLT 2014 Evaluation
Campaign. In total we submitted twelve systems for five lan-
guage pairs, consisting of five primary MT systems, three
contrastive ones, three primary SLT systems and one con-
trastive SLT system.

For all languages we used strong baseline systems, in-
cluding various word and token-based language models,
adaptation techniques and combinations of preordering and
lexicalized reordering models. Careful data selection and in-
clusion of individual models trained on different data proved
successful in many of the systems.

A new model this year is a reordering model that operates
on multiple tree levels, which was applied successfully for
English→Chinese.

Further improvements could be achieved for
English→German by n-best list rescoring with language
and translation models trained with Restricted Boltzmann
Machines.

For translation into Arabic, a special phrase table prun-
ing technique gave an improvement over the baseline. Even
though the merits of a transliteration approach did hardly re-
flect in BLEU, they did not harm and helped to unify trans-
lation appearancein the Arabic target output.

We submitted contrastive systems in order to show the
impact of our novel n-best list rescoring, adjective stemming
and phrase extraction approaches for English→German,
German→English and English→Arabic respectively.

A monolingual translation system for comma insertion
and case correction played a vital role in adjusting the ASR
output for speech translation and was successfully applied in
all three SLT systems.
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Abstract

This paper presents NTT-NAIST SMT systems for
English-German and German-English MT tasks of the
IWSLT 2014 evaluation campaign. The systems are based
on generalized minimum Bayes risk system combination of
three SMT systems using the forest-to-string, syntactic pre-
ordering, and phrase-based translation formalisms. Individ-
ual systems employ training data selection for domain adap-
tation, truecasing, compound word splitting (for German-
English), interpolated n-gram language models, and hy-
potheses rescoring using recurrent neural network language
models.

1. Introduction
Spoken language is a very important and also challenging
target for machine translation (MT). MT tasks in the IWSLT
evaluation campaign focus on the translation of TED Talks
subtitles. These subtitles tend to be clean transcriptions with
few disfluencies, and the talks themselves are logically and
syntactically well-organized compared to casual conversa-
tions.

In order to take advantage of this fact, our system this
year use syntax-based statistical machine translation (SMT)
techniques, which allow for the use of source-side syntactic
knowledge to improve translation accuracy. Specifically, we
use forest-to-string (F2S) translation and syntax-based pre-
ordering. The overall system was based on a combination
of three systems based on F2S, pre-ordering, and standard
PBMT, and includes domain adaptation of translation and
language models, rescoring using neural network language
models, and compound splitting for German.

Specifically comparing to our system from last year’s
competition [1], we have made two improvements. The first
is that we tested a new hypergraph search algorithm [2] in the
F2S system, and compare it to the more traditional method
of cube pruning. The second is that this year we attempted
to extract pre-ordering rules automatically from parallel cor-
pora, as opposed to hand-designing preordering rules based
on linguistic intuition.

This paper presents details of our systems and reports
the official results together with some detailed discussions
on contributions of the techniques involved.

2. Individual Translation Methods
We use three different translation methods and combine the
results through system combination. Each of the three meth-
ods is described in this section, focusing especially on our
new attempts this year on forest-to-string and pre-ordering.

2.1. Forest-to-String Machine Translation

In our previous year’s submission to IWSLT, we achieved
promising results using the forest-to-string machine transla-
tion (F2S; [3]) framework. F2S is a generalization of tree-
to-string machine translation (T2S; [4]) that performs trans-
lation by first syntactically parsing the source sentence, then
translating from sub-structures of a packed forest of potential
parses to a string in the target language.

We have previously found that F2S produces highly com-
petitive results for language pairs with large divergence in
syntax such as Japanese-English or Japanese-Chinese [5].
However, we have also found that there are several elements
that must be appropriately handled to achieve high transla-
tion accuracy using syntax-driven methods [6], one of which
is search. In the F2S component of our submission to IWSLT
this year, we experimented with two different search algo-
rithms to measure the effect that search has on the German-
English and English-German pairs.

As the first algorithm, we use the standard method for
search in tree-based methods of translation: cube pruning
[7]. For each edge to be expanded, cube pruning sorts the
child hypotheses in descending order of probability, and at
every step pops the highest-scoring hypothesis off the stack,
calculates its language model scores, and adds the popped,
scored edge to the hypergraph. It should be noted that the
LM scores are not calculated until after the edge is popped,
and thus the order of visiting edges is based on only an LM-
free approximation of the true edge score, resulting in search
errors.

In our F2S system this year, we test a new method of hy-
pergraph search [2], which aims to achieve better search ac-
curacy by considering the characteristics of LM states when
deciding the order in which to calculate edges. Particularly,
it exploits the fact that states with identical unigram contexts
are likely to have similar probabilities, and groups these to-
gether at the beginning of the search. It then proceeds to
split these states into bi-gram or higher order contexts gradu-
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ally, refining the probability estimates until the limit on num-
ber of stack pops is reached. In our previous work [6] we
have found that hypergraph search achieved superior results
to cube pruning, and we hypothesize that these results will
carry over to German-English and English-German as well.

2.2. Syntax-based Pre-ordering

Pre-ordering is a method that attempts to first reorder the
source sentence into a word order that is closer to the tar-
get, then translate using a standard method such as PBMT.
We used hand-crafted German-English pre-ordering rules [8]
in our submission last year. This year’s system uses an au-
tomatic method to extract domain-dependent pre-ordering
rules, avoiding the time-consuming effort required for creat-
ing hand-crafted rules. The pre-ordering method is basically
similar to [9], but is limited to reordering of child nodes in
syntactic parse trees rather than rewriting and word insertion.

Since the pre-ordering does not work perfectly in all
cases, we allow for further reordering in the PBMT system
that translates the preordered sentences. The reordering limit
of this system is chosen experimentally using held-out data
(dev. set BLEU in this paper).

2.2.1. Reordering Pattern Extraction

A reordering pattern represents a reordering of child nodes in
a source language parse tree, determined by word alignment.
The reordering pattern is similar to a tree-based translation
pattern called frontier graph fragments, which form the most
basic unit in tree-based translation [10], but only holds re-
ordering information on the non-terminal child nodes. A re-
ordering pattern can be extracted from an admissible node
[11] in the parse tree that covers a distinct contiguous spans
in the corresponding target language sentences. Since such a
reordering pattern only is constrained by the syntactic labels
on the parent and child nodes, we consider several attributes
of reordering patterns: syntactic labels of its grand-parent,
left and right siblings of the parent, and surface forms of its
child nodes (only when the child is a part-of-speech node).

2.2.2. Deterministic Pre-ordering

In order to make the pre-ordering deterministic, we use re-
ordering rules from dominant reordering patterns that agree
with more than 75% on the same source language subtrees.
Here, additional attributes define more specific rules that are
not applied to the subtrees with different attributes.

We apply these reordering rules greedily to the syntactic
parse tree in descending order of preference from specific
(more attributes) to general (less attributes) rules. If different
rules with the same number of attributes can be applied, the
most probable one is chosen. More details about the method
can be found in [9].

2.3. Standard Phrase-based Translation

Phrase-based machine translation (PBMT; [12]) models the
translation process by splitting the source sentence into
phrases, translating the phrases into target phrases, and re-
ordering the phrases into the target language order. PBMT is
currently the most widely used method in SMT as it is robust,
does not require the availability of linguistic analysis tools,
and achieves high accuracy, particularly for languages with
similar syntactic structure.

3. Additional System Enhancements
Here we review techniques that were used in our submission
last year [1] and also describe some of our new attempts that
were not effective in our pilot test and not included in the
final system.

3.1. Training Data Selection

The target TED domain is different in both style and vocabu-
lary from many of the other bitexts, e.g. Europarl, Common-
Crawl (which we collectively call “general-domain” data).
To address this domain adaption problem, we performed
adaptation training data selection using the method of [13].1

The intuition is to select general-domain sentences that are
similar to in-domain text, while being dis-similar to the aver-
age general-domain text.

To do so, one defines the score of an general-domain sen-
tence pair (e, f) as [14]:

[INE(e)−GENE(e)] + [INF (f)−GENF (f)] (1)

where INE(e) is the length-normalized cross-entropy of e
on the English in-domain LM. GENE(e) is the length-
normalized cross-entropy of e on the English general-domain
LM, which is built from a sub-sample of the general-domain
text. Similarly, INF (f) and GENF (f) are the cross-
entropies of f on Foreign-side LM. Finally, sentence pairs
are ranked according to Eq. 1 and those with scores lower
than some empirically-chosen threshold are added together
with the in-domain bitext for translation model training.
Here, the LMs are Recurrent Neural Network Language
Models (RNNLMs), which have been shown to outperform
n-gram LMs in this problem [13].

3.2. German Compound Word Splitting

German compound words present sparsity challenges for ma-
chine translation. To address this, we split German words
following the general approach of [15]. The idea is to split
a word if the geometric average of its subword frequencies
is larger than whole word frequency. In our implementa-
tion, for each word, we searched for all possible decomposi-
tions into two sub-words, considering the possibility of delet-
ing common German fillers “e”, “es”, and “s” (as in ”Ar-
beit+s+tier”). The unigram frequencies for the subwords and

1Code/scripts available at http://cl.naist.jp/∼kevinduh/a/acl2013
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whole word is computed from the German part of the bitext.
This simple algorithm is especially useful for handling out-
of-vocabulary and rare compound words that have high fre-
quency sub-words in the training data. For the F2S system,
sub-words are given the same POS tag as the original whole
word.

In the evaluation campaign, we performed compound
splitting only in the German-to-English task. We do not at-
tempt to split German words for the English-to-German task,
since it is non-trivial to handle recombination of German split
words after reordering and translation.

3.3. RNNLM Rescoring

Continuous-space language models using neural networks
have attracted recent attention as a method to improve the
fluency of output of MT or speech recognition. In our sys-
tem, we used the recurrent neural network language model
(RNNLM) of [16].2 This model uses a continuous space rep-
resentation over the language model state that is remembered
throughout the entire sentence, and thus has the potential to
ensure the global coherence of the sentence to the greater ex-
tent than simpler n-gram language models.

We incorporate the RNNLM probabilities through
rescoring. For each system, we first output a 10,000-best list,
then calculate the RNNLM log probabilities and add them
as an additional feature to each translation hypothesis. We
then re-run a single MERT optimization to find ideal weights
for this new feature, and then extract the 1-best result from
the 10,000-best list for the test set according to these new
weights. The parameters for RNNLM training are tuned on
the dev set to maximize perplexity, resulting in 300 nodes in
the hidden layer, 300 classes, and 4 steps of back-propagation
through time.

3.4. GMBR System Combination

We used a system combination method based on Generalized
Minimum Bayes Risk optimization [17], which has been suc-
cessfully applied to different types of SMT systems for patent
translation [18]. Note that our system combination only
picks one hypothesis from an N-best list and does not gen-
erate a new hypothesis by mixing partial hypotheses among
the N-best.

3.4.1. Theory

Minimum Bayes Risk (MBR) is a decision rule to choose
hypotheses that minimize the expected loss. In the task of
SMT from a French sentence (f ) to an English sentence (e),
the MBR decision rule on δ(f) → e′ with the loss function L
over the possible space of sentence pairs (p(e, f)) is denoted
as:

argmin
δ(f)

∑

e

L(δ(f)|e)p(e|f) (2)

2http://www.fit.vutbr.cz/˜imikolov/rnnlm/

In practice, we approximate this using N-best list N(f) for
the input f .

argmin
e′∈N(f)

∑

e∈N(f)

L(e′|e)p(e|f) (3)

Although MBR works effectively for re-ranking single
system hypotheses, it is challenging for system combination
because the estimated p(e|f) from different systems cannot
be reliably compared. One practical solution is to use uni-
form p(e|f) but this does not achieve Bayes Risk. GMBR
corrects by parameterizing the loss function as a linear com-
bination of sub-components using parameter θ:

L(e′|e;θ) =
K∑

k=1

θkLk(e
′|e) (4)

For example, suppose the desired loss function is
“1.0−BLEU”. Then the sub-components could be
“1.0−precision(n-gram) (1 ≤ n ≤ 4)” and “brevity
penalty”.

Assuming uniform p(e|f), the MBR decision rule can be
denoted as:

argmin
e′∈N(f)

∑

e∈N(f)

L(e′|e;θ) 1

|N(f)|

= argmin
e′∈N(f)

∑

e∈N(f)

K∑

k=1

θkLk(e
′|e) (5)

To ensure that the uniform hypotheses space gives the
same decision as the original loss in the true space p(e|f),
we use a small development set to tune the parameter θ as
follows. For any two hypotheses e1, e2, and a reference
translation er (possibly not in N(f)) we first compute the
true loss: L(e1|er) and L(e2|er). If L(e1|er) < L(e2|er),
then we would want θ such that:

∑

e∈N(f)

K∑

k=1

θkLk(e1|e) <
∑

e∈N(f)

K∑

k=1

θkLk(e2|e) (6)

so that GMBR would select the hypothesis achieving lower
loss. Conversely if e2 is a better hypothesis, then we want
opposite relation:

∑

e∈N(f)

K∑

k=1

θkLk(e1|e) >
∑

e∈N(f)

K∑

k=1

θkLk(e2|e) (7)

Thus, we directly compute the true loss using a development
set and ensure that our GMBR decision rule minimizes this
loss.

3.4.2. Implementation

We implement GMBR for SMT system combination as fol-
lows.
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First we run SMT decoders to obtain N-best lists for all
sentences in the development set, and extract all pairs of hy-
potheses where a difference exists in the true loss. Then
we optimize θ in a formulation similar to a Ranking SVM
[19]. The pair-wise nature of Eqs. 6 and 7 makes the prob-
lem amendable to solutions in “learning to rank” literature
[20]. We used BLEU as the objective function and the sub-
components of BLEU as features (system identity feature
was not used). There is one regularization hyperparameter
for the Ranking SVM, which we set by cross-validation over
the development set (dev2010).

3.5. What Didn’t Work Immediately

This year we tried to include a state-of-the-art Neural Net-
work Joint Model (NNJM) [21] to improve the accuracy of
translation probability estimation. The model is used to pre-
dict a target language word using its three preceding tar-
get language words and eleven source language words sur-
rounding its affiliation (the non-NULL source language word
aligned to the target language word to be predicted). We
used top 16,000 source and target vocabularies in the model
and mapped the other words into a single OOV symbol,
while the original paper[21] used part-of-speech classes. Al-
though the original paper presented a method for integrating
the model with decoding, we used the NNJM for reranking
n-best hypotheses in a similar manner as the RNNLM de-
scribed above. The NNJM gave some improvements from
the baseline 1-best in our pilot test, but they were much
smaller than those resulting from RNNLM, and when the
NNJM was combined with RNNLM we saw no significant
gains. One possible reason is the small training data size; the
model is very sparse and needs large training data because of
its large contexts of fourteen (eleven source and three target)
words. The affiliation is very important to predict the tar-
get word correctly but it was determined by automatic word
alignment (such as GIZA++) and may not always be good
enough in our experiments.

We also tried post-ordering [22] by shift-reduce reorder-
ing [23] for German-to-English. It was not effective in our
pilot test even in the first-pass lexical translation, probably
due to less effective English-to-German pre-ordering rules.

4. Experiments

We conducted experiments on the English-German and
German-English MT tasks using the SMT systems described
above developed using the supplied datasets.

4.1. Setup

4.1.1. System Overview

We used three individual SMT systems presented in Sec-
tion 2: forest-to-string (F2S), phrase-based with pre-ordering
(Preorder), and phrase-based without pre-ordering (PBMT).

F2S was implemented with Travatar3 [24] and the phrase-
based MT systems were implemented with Moses [25].

For the Travatar rule tables, we used a modified version
of Egret4 as a syntactic parser, and created forests using dy-
namic pruning including all edges that occurred in the 100-
best hypotheses. We trained the parsing model using the
Berkeley parser over the Wall Street Journal section of the
Penn Treebank5 for English, and TIGER corpus [26] for Ger-
man. For model training, the default settings for Travatar
were used, with the exception of changing the number of
composed rules to 6 with Kneser-Ney smoothing. For search
in the F2S models, we used the previously described hyper-
graph search method.

For the Moses phrase tables, we used standard training
settings with Kneser-Ney smoothing of phrase translation
probabilities [27].

4.1.2. Translation Models

We trained the translation models using WIT3 training data
(178,526 sentences) and 1,000,000 sentences selected over
other bitexts (Europarl, News Commentary, and Common
Crawl) by the method described in Section 3.1.

4.1.3. Language Models

We used word 5-gram language models of German
and English that were linearly interpolated from several
word 5-gram language models trained on different data
sources (WIT3, Europarl, News Commentary, and Com-
mon Crawl). The interpolation weights were optimized
to minimize perplexity on the development set, using
interpolate-lm.perl in Moses. Individual language
models were trained by SRILM with modified Kneser-Ney
smoothing.

4.1.4. Truecaser

In order to maintain the casing of words across languages,
we opted to use truecasing (based on the Moses truecaser)
on both the source and target sides. Truecasing keeps the
case of all words that are not sentence initial, and chooses the
case of the sentence initial word based on the most frequent
appearance among different cases in the training data.

4.2. Full System Results

Our full system was a GMBR-based combination of F2S,
Preorder, and PBMT. Tables 1 and 2 show the official evalu-
ation results for English-to-German and German-to-English
tasks, respectively. Among the individual systems, F2S
showed the best BLEU and TER, and Preorder was the worst.
The poor performance of Preorder was not consistent with
our development results on older test sets (discussed later)

3http://www.phontron.com/travatar/
4https://github.com/neubig/egret/
5http://www.cis.upenn.edu/˜treebank/
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Table 1: Official results for English-to-German (case sensi-
tive). ∆BestSingle represents the differences from the results
by the best single system (F2S).

System tst2013 tst2014
(En-De) BLEU TER BLEU TER
Combination .2580 .5386 .2209 .5760
∆BestSingle +.0097 -.0103 -.0021 -.0100
F2S .2483 .5489 .2230 .5860
Preorder .2443 .5567 .2112 .5947
PBMT .2453 .5528 .2150 .5906

Table 2: Official results for German-to-English (case sensi-
tive).

System tst2013 tst2014
(De-En) BLEU TER BLEU TER
Combination .2781 .5162 .2377 .5643
∆BestSingle +.0070 -.0224 +.0030 -.0180
F2S .2711 .5386 .2347 .5823
Preorder .2646 .5425 .2208 .5914
PBMT .2671 .5422 .2229 .5885

Table 3: Percentages of individual system outputs chosen by
system combination.

System En-De De-En
tst2013 tst2014 tst2013 tst2014

F2S 16.11 19.16 57.59 54.24
Preorder 49.14 50.34 39.69 42.72
PBMT 34.74 30.50 1.39 3.04

and our last year’s results with hand-crafted rules [1]. The
GMBR combination further improved BLEU and TER com-
pared to those of F2S, except for BLEU in tst2014. The
improvement in TER was large, about 1% in English-to-
German and 2% in German-to-English, compared to an at
most 1% gain in BLEU.

Table 3 shows the contributions of individual systems in
the system combination, by percentages of chosen system
outputs. As we discussed in our system description paper
last year [1], the GMBR system combination works as voting
over n-best hypotheses from different systems. The results
in Table 3 indicate the best F2S system contributed little in
English-German and the worst Preorder system contributed
about a half of the system combination outputs. There were
large difference between these results and our last year’s re-
sults, but we do not yet have a solid answer for the reason.
One possibility is the inconsistency between the training con-
dition (Preorder worked well) and the test condition (Pre-
order worked poorly) as discussed later in detail.

Table 4: Results on old IWSLT test sets for English-to-
German (case sensitive). Scores in bold indicate the best
individual system results.

System tst2010 tst2011 tst2012
(En-De) BLEU TER BLEU TER BLEU TER
Combi. .2516 .6309 .2714 .5870 .2388 .6380
F2S .2487 .6452 .2670 .5989 .2306 .6545
Preorder .2412 .6523 .2639 .6043 .2274 .6601
PBMT .2419 .6509 .2634 .6031 .2280 .6575

Table 5: Results on old IWSLT test sets for German-to-
English (case sensitive). Scores in bold indicate the best in-
dividual system results.

System tst2010 tst2011 tst2012
(De-En) BLEU TER BLEU TER BLEU TER
Combi. .3155 .5583 .3711 .4949 .3144 .5515
F2S .3037 .5901 .3465 .5313 .3028 .5812
Preorder .3065 .5730 .3604 .5088 .3055 .5647
PBMT .3043 .5754 .3571 .5119 .3038 .5678

4.3. Detailed Results and Discussions

4.3.1. Evaluation on Old Test Sets

Tables 4 and 5 shows the results on old IWSLT test sets
(tst2010, tst2011, tst2012). The results tend to show a dif-
ferent trend than those for tst2013 and tst2014; Specifically
looking at the German-to-English task, F2S was the worst
and Preorder worked the best on these older data sets, as
shown in Table 5.

One possible reason for this difference is the difference
in the original languages in the older and newer test sets.
The official test sets this year (tst2013, tst2014) came from
TEDX talks in German, and thus the source German sen-
tences were transcriptions. In contrast, the older test sets
(tst2010, tst2011, tst2012) came from TED talks in English,
and thus the source German sentences were translations from
English. It has been widely noted that translations differ sig-
nificantly from original texts stylistically (e.g. [28]), and the
difference may cause some inconsistencies in syntactic pars-
ing and syntax-based translation. Preorder used only domi-
nant reordering patterns in German extracted from translated
German sentences, which were consistent with the TED test
sets but not with the TEDX test sets.

4.3.2. Effect of Search on F2S Translation

As mentioned in Section 2.1, we tested two algorithms
for search in F2S models, cube pruning, and hypergraph
search. In Figure 1 we show the speed and accuracy for
both algorithms at various beam sizes for English-German
and German-English translation. All results are reported on
tst2010, but similar results were found for other sets.

From these results, we can see that given an identical de-

131

Proceedings of the 11th International Workshop on Spoken Language Translation
Lake Tahoe, December 4th and 5th, 2014



0110100 1000 10000

Pop Limit

0.0

0.2

0.4

0.6

0.8

1.0
B

L
E
U

 (
ts

t2
0

1
0

)

27

28

29

30

31

32

0.20 0.21
0.24 0.29 0.37 0.56 1.01 1.66 3.58

0.25
0.31

0.43
0.74

1.23
2.14 4.70

de-en HS

de-en CP

10 100 1000 10000
21

22

23

24

25

26

0.11
0.12

0.13 0.14 0.20 0.28 0.53 0.87 1.99

0.11
0.12

0.14
0.17

0.22 0.39 0.65 1.15 2.66

en-de HS

en-de CP

Figure 1: Hypergraph search (HS) and cube pruning (CP)
results for F2S translation. Numbers above and below the
lines indicate time in seconds/sentence for HS and CP re-
spectively.

coding time, hypergraph search outperforms cube pruning on
both language pairs at all beam sizes, especially for smaller
beams. This effect was particularly notable for German-
English translation. Even when the beam is reduced from
5000 (which was used in our actual submission) to 10, we
only see a drop in one BLEU point, but reduce the time
required for decoding to 200ms, much of which can be at-
tributed to processing other than search such as rule lookup
or file input/output. This is in contrast to cube pruning, which
sees a 5.5 BLEU point drop at the same beam size.

5. Conclusion

In this paper, we presented our English-to-German and
German-to-English SMT systems using combination of
forest-based, pre-ordering, and standard phrase-based MT
systems. The forest-based system employed the hypergraph
search for efficient translation, and the pre-ordering used
automatically-induced rules from the bilingual corpus. The
individual systems used training data selection, compound
word splitting for German, and RNNLM rescoring, same as
our last year’s systems. Our results show the forest-to-string
SMT was consistently the most effective of the three and can
be further improved by GMBR system combination with the
results from the other two systems. The pre-ordering was not
effective in the 2013 and 2014 test sets in contrast to the older
ones.
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Abstract 

This paper describes the University of Science and 

Technology of China’s (USTC) system for the MT track of 

IWSLT2014 Evaluation Campaign. We participated in the 

Chinese-English and English-Chinese translation tasks. For 

both tasks, we used a phrase-based statistical machine 

translation system (SMT) as our baseline. To improve the 

translation performance, we applied a number of techniques, 

such as word alignment with the �! -norm, phrase table 

smoothing, hierarchical reordering model, domain adaptation 

of the language and translation model, recurrent neural 

network based language model, neural network joint model, 

etc. By integrating these techniques, we obtained total 

improvements of 4.2% BLEU score for Chinese-English 

system and 3.7% BLEU score for English-Chinese system, 

compared to the baseline systems. 

1. Introduction 

In the IWSLT 2014 evaluation campaign, we participated in 

the optional MT track with the Chinese-English and English-

Chinese translation tasks. We build a phrase-based statistical 

machine translation system for these tasks, and similar 

techniques are applied to Chinese-English and English-

Chinese systems. 

Before training, Chinese sentences are segmented into 

words using our Chinese word segmentation tool, and English 

sentences are tokenized and transformed into lower case. After 

preprocessing, GIZA++ is applied for training word 

alignments. Then, bilingual phrase pairs are extracted from 

word aligned parallel sentences. Based on the extracted phrase 

table, we build a weak baseline system with several widely-

used features. The feature weights are tuned using Minimum 

Error Rate Training (MERT) [1]. 

By refining some steps in the training process we obtained 

our strong baseline. Firstly, we tried different development set. 

Secondly, we modified GIZA++ with the �!-norm [2]. Then 

we tried different heuristics to combine bidirectional word 

alignment results. When calculating the phrase translation 

probabilities, we adopted Good-Turing smoothing rather than 

using relative frequency. By also using hierarchical reordering 

model (HRM) and k-best Margin Infused Relaxed Algorithm 

(kbMIRA) [3], our strong baseline system obtained significant 

improvements over the weak baseline. 

To further improve translation performance, we exploited 

additional models, including more and larger language models, 

neural network based models, out-of-domain models trained 

from MultiUN corpus, and an operation sequence model [4]. 

We use these models in two ways: one is to integrate them into 

the decoder, and the other is to use them to rerank the n-best 

translations generated by the decoder. 

Language models play an important role in our statistical 

machine translation system. Besides the in-domain language 

model trained from the TED training corpus, we built several 

larger language models from English Gigaword corpus and 

News Crawl corpora provided by the evaluation campaign. 

These language models were added into the translation system 

as separate features. We also built a word class based language 

model to alleviate data sparseness. Furthermore, a backward 

language model is used in reranking. 

Neural networks have been successfully applied to 

machine translation recently. In our system, we built a 

recurrent neural network language model (RNNLM) for 

reranking. We also built several neural network joint models 

(NNJM), one for decoding, and the others for reranking. 

The rest of the paper is organized as follows. In section 2, 

we generally describe the techniques we adopted in the 

translation systems. In section 3, we illustrate our 

experimental results on Chinese-English and English-Chinese 

translation systems. In the last section, we give a brief 

conclusion and the future work. 

2. System Overview 

For the IWSLT 2014 evaluation campaign, we build a phrase-

based statistical machine translation system that is based on a 

log-linear discriminative model. 

2.1. SMT System 

Our phrase-based statistical machine translation system is 

mainly based on the work of an open-source toolkit Moses [5]. 

A number of widely used features are adopted in our SMT 

system, including bidirectional phrase translation probabilities 

and lexical translation probabilities, language model, word 

penalty, phrase penalty, distance-based distortion model, and 

hierarchical reordering model [6].  

We use a modified GIZA++ toolkit for word alignment, 

which extend the IBM models and HMM model by the 

addition of an �! prior to the word-to-word translation model. 

It can reduce overfitting, and generate less useless phrase 

pairs. We test different heuristics (grow, grow-diag-final, 

grow-diag-final-and) for symmetrizing bidirectional word 

alignment results. For different tasks, there are some notable 

differences in performance among heuristics. When 

calculating the phrase translation probabilities, we use Good-

Turing smoothing techniques, rather than using relative 

frequency. It turned out to be useful to improve translation 

performance. 

Since the SMT system is based on a log-linear model, 

feature weights have a big impact on translation quality. 
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While tuning feature weights, we tried different development 

sets. In addition, tuning algorithm also makes some difference. 

We tested MERT and kbMIRA, and found that kbMIRA is 

better than MERT in our experiments. 

N-gram language models are created with the SRILM 

toolkit [7]. We evaluate the tokenized translation results in 

case-sensitive fashion, using the BLEU metric [8].  

For date, time and other number related expressions 

(DTN), we have some special treatments. We firstly write 

some rules to identify DTN expressions in source language, 

and then edit corresponding translations in target language for 

each identification rule. Regular expressions are used for the 

task. Finally, these rules with translations are added into the 

translation model with high translation probabilities. 

Some source words, which cannot be translated by the 

translation model, are called out-of-vocabulary (OOV) words. 

We make additional process for two kinds of OOV words. 

The first case is those do occur in the TED training corpus, 

but no corresponding translations in the phrase table due to 

the restriction of phrase extraction. In this case, we make use 

of lexical translation table to translate these OOV words. The 

second case is those do not occur in TED corpus but appear in 

MultiUN corpus. For these words, we extract their translation 

from the MultiUN phrase table. In the other cases, we simply 

drop OOV words. 

To exploit some features that are not suitable to be added 

into the decoder, we use them in the reranking step. The n-

best translation results are generated by the decoder, and then 

additional feature scores are calculated for each hypothesis. 

Finally, the n-best list is reranked according to the new 

feature set. 

Along with the techniques mentioned above, we also 

implement some novel models to further improve translation 

performance, which are described as follows. 

2.2. Language Model 

We put an emphasis on language modeling. Besides the 5-

gram model trained from TED corpus, we also train several n-

gram language models from the English Gigaword corpus and 

News Crawl corpora. Each of them is taken as a separate 

feature in the log-linear model. In addition, we build several 

other types of language models described below. 

2.2.1. Backward Language Model 

We build a backward n-gram language model [9], where the 

probability of each word is estimated depending on words 

following it: 

                

P(W ) = P(w
i
|w

i+1
,w

i+2
,...,w

i+n−1
)

i=T

1

∑  (1) 

We use the model in reranking stage. In our experiments, 

the backward language model can sometimes be helpful, but 

not always. 

2.2.2. Class-based Language Model 

Data sparseness is a common problem in natural language 

processing. Automatically clustering words from monolingual 

or bilingual training corpora into word classes is a widely used 

method to improving statistical models [10]. Here we build a 

class-based language model, and find it helpful in improving 

translation quality.  

Firstly, we made use of mkcls in Moses toolkit to train a 

mapping from each word to a fixed class. Then we project 

words in training corpus to classes and train a class-based 

language model. In our system, a 7-gram class-based model is 

trained using SRILM toolkit. Class-based language model 

probability is used as a separate feature in decoder. 

2.2.3. Recurrent Neural Network Language Model 

Recent work has shown that recurrent neural network 

language models outperform significantly the n-gram models, 

even in case when n-gram models are trained on much more 

data. Moreover, when compared to feed-forward neural 

network language model, the RNNLM allows effective 

processing of sequences and patterns with arbitrary length, and 

it enables to learn long-distance dependence in the hidden 

layer.  

In our system, we use the open-source RNNLM toolkit [11] 

to train a recurrent neural network language model. The model 

is used at the reranking stage to generate an additional feature 

for each hypothesis. 

2.3. Neural Network Joint Model 

Neural network based technologies are playing a more and 

more important role in recent natural language processing 

research. Recent studies on machine translation, which 

introduce neural network language model (NNLM) as features, 

turns out to be a breakthrough progress [12]. Moreover, some 

researchers present a novel formulation of a neural network 

joint model (NNJM) [13] as an extension of NNLM, which 

introduces dependence on source words. Though NNJM is just 

based on a lexicalized probabilistic model and a simple feed 

forward neural network, the experimental results show that it 

has significant improvements over the baseline systems.  

The basic NNJM (s2t.l2r) formula can be written as: 

                

P(T | S) ≈ P(t
i
| t
i−1,...,ti−n+1,ξi )

i=1

|T |

∏  
(2) 

where T is the target sentence, S is the source sentence, ξ
i
 is 

the source word window. In this circumstance, each target 

word t
i

is affiliated with exactly one source word at index a
i
. 

Then ξ
i
 is a m-word source window centered at a

i
. 

                  
ξ
i
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a
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,..., s
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i
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By changing the dependence order among target words, or 

swapping source and target languages, we can implement 

several variants of NNJM (s2t.r2l, t2s.l2r, t2s.r2l) as shown in 

Equation 4 to 6, where ζ
i
 is similar with ξ

i
, which is just a 

replacement of source word s into target word t. 

                

P(T | S) ≈ P(t
i
| t
i+1
,...,t
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∏  
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As the computational cost of NNLMs is a significant issue 

in decoding phase, we adopt two techniques for speeding up 

NNJM computation: self-normalization and pre-computation. 

The self-normalization technique aims to avoid computing 

output softmax over the entire target vocabulary. Mainly, it 

replaces the training objective function with 

                

L = [log(P(x
i
))−α log2 (Z(x

i
))]

i

∑  
(7) 
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where Z(x)  is the summing part of softmax normalizer, and 

α  is the parameter that controls trade-off between neural 

network accuracy and mean self-normalization error. At 

decoding phase, we simply use the input value of output layer 

as feature score, rather than log(P(x)) . 

Another technique is called pre-computation, which 

computes dot product between the projection layer (word 

embedding) and the first hidden layer in advance. Furthermore, 

the computation of hyperbolic tangent (tanh) can also be 

accelerated using a lookup table. 

In our experiments, we integrate the NNJM s2t.l2r model 

into our decoder, and the other variant models are used in the 

reranking step. 

2.4. Domain Adaptation  

Besides the TED portion data, the MultiUN [14] bilingual 

data can also be used for building translation models. 

However, the MultiUN Chinese-English parallel corpus 

provided by the IWSLT2014 Evaluation Campaign is aligned 

in chapter level. It cannot be used directly. To solve the 

problem, we firstly employ a tool hunalign [15] to 

automatically align the corpus at sentence-level.  

In addition, the MultiUN data is almost 50 times larger 

than the in-domain parallel data, so it is unwise to treat them 

equally. We adopt a cross entropy based text selection method 

to choose partial volume from the MultiUN data [16]. In this 

method, an in-domain language model is applied to calculating 

cross entropy for each sentence pair, and then those with 

relatively low cross entropy are selected. 

We select about 20% portion of the MultiUN data, and 

divide these data into several groups. For each group, we can 

train a translation model. There are two ways to incorporate 

these translation models into the system: linear interpolation 

and log-linear interpolation. We use the simple yet effective 

linear interpolation method. Each component probability in the 

translation model is linearly interpolated together. For 

example, let us consider the “backward” probability p(s | t)  

of source language phrase s being generated by target 

language phrase t. For a set of p
i
(s | t) , each trained on a sub-

corpus, the mixture model is computed as 

                
∑
=

=

N

i

ii tsptsp
1

)|()|( α  (8) 

To set the weights 
i

α , we firstly extract a set of phrase 

pairs from an in-domain development set using the training 

procedure. This yields a joint distribution p~ , which is used to 

define a maximum likelihood objective function as in 

Equation 9. The weights can then be learned efficiently using 

EM algorithm, which was first proposed in [17]. 
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3. Experiments 

In this section, we describe the experimental setup and results 

for both Chinese-English and English-Chinese translation 

tasks. We use the IWSLT 2013 test set for evaluating the 

techniques described above. 

 

3.1. Chinese-English 

As preprocessing, all the English texts in the corpora were 

tokenized by the tokenization tool in Moses toolkit. All 

Capital letters were converted to lower case. For Chinese, 

sentences need to be split into words. We compared several 

Chinese word segmentation tools and finally chose the in-

house implementation. As post-processing, we use an SMT-

based recaser to restore the true case for the output of the 

decoder. The experimental results are given in Table 1. All 

scores are case-sensitive BLEU. 

3.1.1. Baseline Systems 

Firstly, we built a weak baseline system (“weak-baseline” in 

Table 1) with the similar setup to that of the official baseline 

system in IWSLT 2013 [18]. All models are trained using the 

in-domain TED data provided by the campaign [19]. 

Bidirectional word alignments were trained by GIZA++ and 

symmetrized using grow-diag-final-and heuristic. An MSD-

based lexical reordering model was applied. A 5-gram 

language model with modified Kneser-Ney smoothing was 

trained from the English part of the parallel corpus using 

SRILM toolkit. The weights of all features are optimized on 

dev2010 using MERT. Translation quality was evaluated on 

the tst2013 set in IWSLT 2013. 

We obtained the strong baseline system by improving the 

following components: development set, word alignment, 

translation model, reordering model and weight tuning 

algorithm.  

The official website released four sets for tuning, which 

are dev2010, tst2010, tst2011, and tst2012. Since bigger 

development set showed better performance in our pilot 

experiments, we combined them together and formed a big 

development set. Using the big development set for weight 

tuning gave rise to an improvement of +0.4% BLEU (“bigdev” 

in Table 1).  

For word alignment, we improved GIZA++ with the �!-

norm. Although it has almost no effect on tst2013, it improved 

the development set by +0.16% BLEU. So we still keep it in 

our system. By simply replacing grow-diag-final-and by grow, 

our system gained further +0.14% BLEU.  

There are only 180k sentence pairs in the TED training 

corpus, which is quite small. Over 90% phrase pairs in the 

phrase table occurred only once in the training corpus. This 

indicates data sparseness. Similarly to language model 

smoothing, we applied Good-Turing [20] to smoothing 

occurrence counts of phrase pairs, instead of using the counts 

directly. We obtained an improvement of +0.33% BLEU with 

Good-Turing smoothing (“GT smoothing” in Table 1). 

As for the MSD based lexical reordering model, it is 

known that there are inconsistence about reordering 

orientation detection between training and decoding time [21]. 

A simple yet effective improvement is the hierarchical 

reordering model (HRM). Replacing MSD by HRM gave us 

another gain of +0.29% BLEU.  

Finally, we adopted kbMIRA instead of MERT to tune 

feature weights. kbMIRA optimize BLEU less aggressively, 

improving model score and BLEU correlation across range of 

hypothesis. It produced an additional gain of +0.3% BLEU. 

Now we denote the system as “strong-baseline” in Table 1.   

From “weak-baseline” to “strong-baseline”, there are 

totally improvements of +1.45% BLEU on tst2013. Base on 

the “strong-baseline”, we further improve our system by 
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adding more language models, neural network joint model, 

domain adapted translation models, etc. 

3.1.2. Additional Features 

Besides the parallel corpora, the official website also provides 

a number of monolingual English data. We used them to train 

n-gram language models. To be specific, each corpus was 

used to train a 5-gram language model with modified Kneser-

Ney smoothing. Then we selected top ten language models 

according to the perplexity of LM on development set. Table 

2 shows all of the selected corpora and the corresponding 

perplexities. The TED in-domain language model was the 

primary LM used in baseline systems and naturally has the 

lowest perplexity. We added these ten out-of-domain LMs to 

the decoder as separate features, and tuned their weights 

together with other features. We were surprising to see that 

these ten LMs gave us a great improvement up to +1.88% 

BLEU, which is the biggest improvement among all the 

techniques.  

For NNJMs, we set up a projection layer of 192 

dimensions and single hidden layer of 512 dimensions. Sizes 

of both input and output vocabularies are 10K. During training 

we set an initial learning rate of 10
-3

 and a mini-batch size of 

128. Training was performed on GPU processor, and the 

decoding was carried out on CPU. By incorporating the s2t.l2r 

model into decoder, we achieved further gain of +0.5% BLEU. 

MultiUN is the only out-of-domain parallel data that can 

be used in the campaign. It contains 9.5 million sentences, 

which is 52 times larger than the in-domain data. Instead of 

using all the MultiUN data, we selected about 1.9M parallel 

sentences from it using a cross-entropy based method [16], 

and divided them into four groups (125K, 250K, 500K, 1000K 

sentence pairs for each group). From each group, we trained 

one translation model. Then we linearly interpolated these 

models together with the in-domain model. Interpolation 

weights were trained by EM algorithm. This domain 

adaptation method improves performance by +0.18% BLEU 

(denoted by “+UN_DA”). 

In the last step, we tried to use more features to rerank k-

best translations. We firstly generate 1000 best hypotheses 

from the “+UN_DA” system. Then five additional features 

were added for each hypothesis: three NNJM model (s2t.r2l, 

t2s.l2r, t2s.r2l) scores, a RNNLM score and a backward 

language model score. kbMIRA was used to tune weights for 

all features including those used in decoding. Reranking 

brought a further improve of +0.22% BLEU. The “reranking” 

result was our primary submission. 

Table 1: Results for Chinese-English MT task 

system dev tst2013 

weak-baseline 10.61 14.19 

+bigdev 13.20 14.59 

+�!-norm 13.36 14.58 

+grow 13.42 14.72 

+GT smoothing 13.65 15.05 

+HRM 13.87 15.34 

+ kbMIRA 

(strong-baseline) 
13.91 15.64 

+10 LMs 15.44 17.52 

+NNJM 16.01 18.02 

+UN_DA 16.20 18.20 

+reranking 16.42 18.42 

Table 2: Selected corpora for LMs and corresponding 

perplexities 

data bigdev 

WIT
3
 mono English (in-domain) 95.0 

CzEng 1.0 from WMT14 103.7 

News Crawl: 2013 from WMT14 104.8 

News Crawl: 2012 from WMT14 107.4 

News Crawl: 2011 from WMT14 108.9 

nyt_eng from gigaword fifth edition 109.0 

News Crawl: 2009 from WMT14 113.1 

News Crawl: 2008 from WMT14 114.2 

ltw_eng from gigaword fifth edition 116.8 

News Crawl: 2010 from WMT14 117.4 

News Crawl: 2007 from WMT14 128.6 

Table 3: Results for English-Chinese MT task 

System 

bigdev tst2013 

BLEU 

(char-based) 

BLEU 

(char-based) 

weak-baseline 14.92 18.87 

strong-baseline 20.03 21.46 

+wcLM 20.36 21.70 

+OSM 20.47 22.05 

+NNJM 20.83 22.35 

    +UN_DA 20.91 22.44 

+reranking 21.01 22.55 

3.2. English-Chinese 

For the English-Chinese MT task, all the parallel and 

monolingual data are preprocessed exactly the same way as 

the Chinese-English task. All the scores showed in Table 3 

are char-based BLEU. We also trained a weak baseline and a 

strong baseline using the same techniques as those in the 

Chinese-English task. The development set is also the same 

one, except that the source and target language are reversed. 

The “strong-baseline” achieves an improvement of +2.59% 

BLEU on tst2013 over the “weak-baseline”.  

Then, we improved the “strong-baseline” system by 

adding a 7-gram word class language model into the decoder 

(wcLM, +0.24% BLEU). All words were classified into 400 

classes. After that, an Operation Sequence Model (OSM) was 

added. It gains +0.35% BLEU (Theses two techniques were 

also tried on the Chinese-English task, but no improvements 

were achieved. So we neglect them in the above sub-section). 

We also adopted NNJM (s2t.l2r, +0.31% BLEU) and domain 

adaptation for translation models (UN_DA, +0.09% BLEU). 

Finally, we reranked 1000-best hypotheses generated by 

“+UN_DA” system (reranking, +0.11% BLEU). The 

“reranking” result was our primary submission. 

4. Conclusions 

In this paper, we presented our submission runs and technical 

details of the IWSLT 2014 Evaluation Campaign in the 

optional MT track on Chinese-English and English-Chinese 

translations. The baseline system utilizes a state-of-the-art 

phrase-based translation decoder. After applying a lot of 

novel models and techniques, the translation results were 

significantly improved.  

To summarize, main improvements result from the 

following techniques: 
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! Rich language model features. We build several large 

language models and integrate them into the log-linear model 

as separate features. We build different types of language 

models such as RNNLM, class-based LM and reverted-

directional LM. 

! Successfully implemented neural network models. We 

build NNJM, RNNLM for decoding or reranking, and achieve 

significant improvements. 

! Effectively used data. We make a big development set by 

combining several previous test sets. Bigger development set 

produces better results. We extract some useful texts from 

MultiUN, which helps improve the translation model. 

In the future, we are planning to integrate more features 

into our log-linear models. 
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Abstract
This paper describes NICT’s participation in the IWSLT
2014 evaluation campaign for the TED Chinese-English
translation shared-task. Our approach used a combination
of phrase-based and hierarchical statistical machine transla-
tion (SMT) systems. Our focus was in several areas, specifi-
cally system combination, word alignment, and various lan-
guage modeling techniques including the use of neural net-
work joint models. Our experiments on the test set from
the 2013 shared task, showed that an improvement in BLEU
score can be gained in translation performance through all of
these techniques, with the largest improvements coming from
using large data sizes to train the language model.

1. Introduction
In the IWSLT 2014 machine translation evaluation cam-
paign, the NICT team participated in the TED [1] transla-
tion shared-task for Chinese-English. This paper describes
the machine translation approach adopted for this campaign.

Our system was a combination of phrase-based and hier-
archical SMT systems. The combination was performed by
reranking the n-best hypotheses from these systems. A log-
linear model which used the hypothesis scores of the com-
ponent systems as features was used to calculate the score
used in reranking. Additional features were also added into
the log-linear model, for example features from a neural net-
work model, or talk-level language model scores.

In addition to system combination, we put emphasis on
language modeling. We used three approaches to improve
the language modeling in the system. In the first approach
we used a language model that was an interpolation of an in-
domain language model, and a language model trained on the
GIGAWORD data. In the second approach, we incorporated
a language model trained on the machine translations of each
talk in the test dataset into the reranking procedure. In the
third approach, a bilingual feed-forward neural network [2]
was used in the reranker.

Finally, we also improved the word alignment by us-

ing combining the alignments from two independent align-
ers: GIZA++ [3] and a modified version of the CICADA
aligner [4].

2. Data
We used same Chinese-English data sets in all of the experi-
ments in this paper. The supplied bilingual data consisted of
179901 sentence pairs. From this data we randomly selected
a 3023-pair development set for tuning the decoder, and a
1553-pair development set for tuning the reranker. These de-
velopment sets consisted of complete talks. All of the re-
maining talks were used as bilingual training data for the
component SMT systems. We used the IWSLT 2013 test set
for evaluation. For some of the experiments we used lan-
guage models trained on the English LDC Gigaword dataset,
a collection of approximately 4 billion words of international
newswire text.

2.1. Pre-processing

The English data was tokenized by applying the EUROPARL
tokenizer [5]. We also removed all case information from the
English text to help to minimize issues of data sparseness in
the models of the translation system. All punctuation was left
in both source and target. We took the decision to generate
target punctuation directly using the process of translation,
rather than as a punctuation restoration step in post processing
based on experiments carried out for the 2010 IWSLT shared
evaluation [6].

2.2. Post-processing

The output of the translation system was subject to the fol-
lowing post-processing steps which were carried out in the
following order:

1. In all experiments, the out of vocabulary words
(OOVs) were passed through the translation process
unchanged, some of these OOVs were Chinese and
some English. For the primary submission, we took
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the decision to delete only those OOVs containing Chi-
nese characters not included in the ASCII character set
and leave words containing only ASCII characters in
the output.

2. The output was de-tokenized using the de-tokenizer in-
cluded with the MOSES toolkit [7].

3. The output was re-cased using the re-casing tool sup-
plied with the MOSES toolkit. We trained the re-
casing tool on cased text from the TED talk training
data.

3. The Base Systems
3.1. Decoders

Our submission used two SMT systems within a system com-
bination framework; these systems were:

1. OCTAVIAN, an in-house phrase-based decoder.

2. A hierarchical version of the MOSES decoder [7].

The OCTAVIAN decoder used in these experiments is an
in-house phrase-based statistical machine translation decoder
that can operate in a similar manner to the publicly available
MOSES decoder [7]. The base decoder used a standard set
of features that were integrated into a log-linear model using
independent exponential weights for each feature. These fea-
tures consisted of: a language mode; five translation model
features; a word penalty; and a lexicalized re-ordering model
with monotone, discontinuous, swap features for the current
and previous phrase-pairs. We decoded with a reordering
limit of 5 in the OCTAVIAN phrase-based decoder.

3.2. Language Model Training

The language models were built using the SRI Language
Modeling Toolkit [8]. A 5-gram model was built for decod-
ing the development and test data for evaluation. The lan-
guage models were smoothed using modified Knesser-Ney
smoothing.

3.3. Translation Model Training

The translation model for the base system was built in the
standard manner using a 2-step process. First the training data
was word-aligned using a combination of the CICADA and
GIZA++ [3] aligners. Two copies of the corpus were aligned
independently with each aligner, then the aligned copies were
concatenated prior to phrase extraction. Second, the phrase-
extraction heuristics from the MOSES [7, 9] machine transla-
tion toolkit were used to extract a set of bilingual phrase-pairs
using the alignments.

3.4. Parameter Tuning

To tune the values for the log-linear weights in our system,
we used the standard minimum error-rate training procedure

Component System BLEU (%)
OCTAVIAN 14.74
MOSES (hierarchical) 14.95

Table 1: BLEU scores of the component systems

(MERT) [10]. The weights for the models were tuned using
the development data supplied for the task.

3.5. Evaluation

We evaluated each of these systems on the IWSLT 2013 test
set, and the results are shown in Table 3.5. The evaluation
in all of the experiments in this report was carried out on to-
kenized, lowercase data, using the “multi-bleu.perl” evalu-
ation script included in release version 2.1 of the MOSES
toolkit. The systems are roughly comparable in performance,
and about 1.5 BLEU percentage points higher than the case-
insensitive MOSES baseline reported in [11], we believe this
can be explained by differences in the tokenization used for
evaluation, and also by differences in the development sets
used for tuning. We found that when tuned and evaluated on
different data sets, the relative rankings of the systems may
vary.

4. Methodology
4.1. Language Modeling

4.1.1. Neural Network Model

We implemented the neural network joint models proposed
in [2] and used the output as a feature in the reranker. We
ran a set of experiments to determine the optimal network ar-
chitecture. We varied the size of the context on both source
and sides, and also the scale of the neural network. We found
the settings used in [2] gave rise the highest performance, and
we therefore adopted these settings in our system. These set-
tings were: 11-word source context, 3-word target context,
192-unit shared embedding layer, and two additional 512-
unit hidden layers. We set both input and output vocabulary
size to 32000. The neural network was implemented using
the NPLM toolkit [12].

The results are shown in Table 4.3. The gain using from
this approach was approximately 0.5 BLEU points. This was
lower than the gains reported in [2], however, in their experi-
ments the neural network was directly integrated into the de-
coding process. We integrated monolingual neural network
model into the OCTAVIAN decoder, however, the experi-
ments were not completed due to time limitations.

4.1.2. Gigaword

We combined language models trained on the source of the
parallel TED corpus, and the Gigaword newswire corpus by
linear interpolation. The interpolated language model was
then used directly in the decoding process, and constituted a
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SMT System BLEU (%)
OCTAVIAN TED LM 14.74
OCTAVIAN TED+Gigaword 16.72
MOSES hierarchical TED LM 14.95
MOSES hierarchical TED+Gigaword 16.83

Table 2: Evaluation of the effectiveness of using a large out-
of-domain language model.

single feature in the log-linear model. The interpolation was
done using the SRI Language Modeling Toolkit [8]. We ran
pilot experiments to determine the best interpolation weight
by grid search and found a weight of 0.5 to be the most effec-
tive. Both of the language models were trained with modified
Knesser-Ney smoothing [13, 14].

The results are shown in Table 4.1.2. It is clear that
adding a large out-of-domain language model is very effec-
tive on our task.

4.1.3. Talk-level Model

This model was a language model built by applying the SRI
Language Modeling Toolkit to machine translated output.
The talk-level language model was built from the set of 1000-
best translation hypotheses obtained by translating the test set
using each of the component translation systems. The 1000-
best lists from the component systems were merged, into a set
of unique word sequences. A different language model was
build from each talk in the test set, and applied only to sen-
tences from the same talk. The score of the language model
was used as a feature for reranking.

The results are shown in Table 4.1.2 and show a modest
improvement in performance over the baseline without this
model.

4.2. Alignment

Two copies of the training data were aligned. One copy with
GIZA++, and the other with an enhanced version of the CI-
CADA aligner. The SMT models derived from the alignment
were trained on the union of this aligned data.

The results are shown in Table 4.2. The largest gain arises
from using the CICADA aligner together with the hierarchi-
cal SMT system. However we took the decision to use this
strategy in our primary submission because in pilot experi-
ments the strategy based on a combination of methods typi-
cally outperformed the strategy based on a single method.

4.3. System Combination

The system combination was performed by integrating fea-
tures from the component SMT systems, together with a set
of additional features within the framework of a log-linear
model. The log-linear weights of all the features were tuned
on a separate development set using the same MERT ap-
proach as in tuning the weights in the models used by the

SMT System BLEU (%)
OCTAVIAN GIZA++ 14.74
OCTAVIAN CICADA 15.21
OCTAVIAN Union 15.22
MOSES hierarchical GIZA++ 14.95
MOSES hierarchical CICADA 15.56
MOSES hierarchical Union 15.54

Table 3: Evaluation of the various alignment strategies.

SMT System BLEU (%)
OCTAVIAN baseline 17.09
MOSES hierarchical baseline 17.56
Combination 17.65
Combination with neural network joint model 17.88
Combination with talk-level LM 17.68
Combination with all features 17.92

Table 4: Evaluation of the combination systems.

decoders. The features using in reranking were:

1. The decoder score from the OCTAVIAN decoder;

2. The decoder score from the hierarchical MOSES de-
coder;

3. The output from the joint neural language model;

4. The talk-level language model score.

1000-best lists from the 2-component systems were
merged in the following manner:

1. The n-best lists of each component system were made
unique; only the best scoring hypotheses was kept from
a set of duplicate hypotheses which gave rise to the
same target word sequence.

2. Hypotheses with the target text were merged across
systems into a single hypothesis, receiving the respec-
tive decoder scores in features 1. and 2.

3. If the hypothesis was only generated by one of the com-
ponent systems, it received zero for the feature corre-
sponding to the decoder that did not generate it.

4. Features 3. and 4. were then calculated for each hy-
pothesis.

The results are shown in Table 4.3. Both of the com-
ponent systems used in the combination were trained using
the enhanced alignment method proposed in Section 4.2, and
included the interpolated language model described in Sec-
tion 4.1.2.
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5. Conclusions
This paper described NICT’s system for the IWSLT 2014
evaluation campaign for the TED Chinese-English transla-
tion shared-task. Our approach was based on a combination
of hierarchical and phrase-based statistical machine transla-
tion systems integrated with other features within the frame-
work of a single log-linear model. We augmented the base
systems using multiple alignment strategies, a neural net-
work joint model, and a talk-level language model. We were
able to improve the translation performance over a phrase-
based MOSES baseline without these features by 2.96 BLEU
points.
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Abstract 
This research explores effects of various training settings 

between Polish and English Statistical Machine Translation 

systems for spoken language. Various elements of the TED 

parallel text corpora for the IWSLT 2014 evaluation campaign 

were used as the basis for training of language models, and for 

development, tuning and testing of the translation system as 

well as Wikipedia based comparable corpora prepared by us. 

The BLEU, NIST, METEOR and TER metrics were used to 

evaluate the effects of data preparations on translation results. 

Our experiments included systems, which use lemma and 

morphological information on Polish words. We also 

conducted a deep analysis of provided Polish data as 

preparatory work for the automatic data correction and 

cleaning phase.  

1. Introduction 

Polish is one of the complex West-Slavic languages, which 

represents a serious challenge to any SMT system. The 

grammar of the Polish language, with its complicated rules 

and elements, together with a big vocabulary (due to complex 

declension) are the main reasons for its complexity (in Polish 

there are seven cases, three genders, animate and inanimate 

nouns, adjectives agreed with nouns in terms of gender, case 

and number and a lot of words borrowed from other languages 

which are often inflected similarly to those of Polish origin). 

This greatly affects the data and data structure required for 

statistical models of translation. The lack of available and 

appropriate resources required for data input to SMT systems 

presents another problem. SMT systems should work best in 

specified, not too wide text domains and will not perform well 

for general use. Good quality parallel data, especially in a 

required domain has low availability. In general, Polish and 

English differ also in syntax. English is a positional language, 

which means that the syntactic order (the order of words in a 

sentence) plays a very important role, particularly due to 

limited inflection of words (e.g. lack of declension endings). 

Sometimes, the position of a word in a sentence is the only 

indicator of the sentence meaning. In the English sentence, 

the subject group comes before the predicate, so the sentence 

is ordered according to the Subject-Verb-Object (SVO) 

schema. In Polish, however, there is no specific word order 

imposed and the word order has no decisive influence on the 

understanding of the sentence. One can express the same 

thought in several ways, which is not possible in English. For 

example, the sentence „I just tasted a new orange juice.” can 

be written in Polish as „Spróbowałem właśnie nowego soku 

pomarańczowego”, or ”Nowego soku pomarańczowego 

właśnie spróbowałem.”, or ”Właśnie spróbowałem nowego 

soku pomarańczowego.”, or „Właśnie nowego soku 

pomarańczowego spróbowałem.” Differences in potential 

sentence orders make the translation process more complex, 

especially when working on a phrase-model with no 

additional lexical information.  

As a result starting point was much lower than for other 

languages, however our progress in last 3 years was faster than 

others [1,2]. The aim of this work is to create an SMT system 

for translation from Polish to English (and the other way 

round, i.e. from English to Polish) to address the IWSLT 2014 

[3] evaluation campaign requirements. This paper is structured 

as follows: Section 2 explains the Polish data preparation. 

Section 3 presents the English language issues. Section 4 

describes the translation evaluation methods. Section 5 

presents the results. Lastly in Section 6 we summarize 

potential implications and ideas for future work. 

2. Preparation of the Polish data 

The Polish data in the TED talks (about 17 MB) include 

almost 2,5 million words that are not tokenized. The 

transcripts themselves are provided as pure text encoded with 

UTF-8 and the transcripts are prepared by the IWSLT team 

[4]. In addition, they are separated into sentences (one per 

line) and aligned in language pairs. 

It should be emphasized that both automatic and manual 

preprocessing of this training information was required. The 

extraction of the transcription data from the provided XML 

files ensured an equal number of lines for English and Polish. 

However, some of the discrepancies in the text parallelism 

could not be avoided. These discrepancies are mainly 

repetitions of the Polish text not included in the English text. 

Another problem was that TED 2013 data was full of 

errors. [5]. For the IWSLT 2014 we helped in repairing those 

errors in train, test and development sets. It was done semi- 

automatically by the usage of our tool described in [6]. We 

repaired spelling errors that artificially increased the 

dictionary size in Polish side of the corpora. Additionally we 

filtered out and repaired bi-sentences with odd nesting, such 

as: 

Part A, Part A, Part B, Part B. 

e.g. 

“Ale będę starał się udowodnić, że mimo złożoności, Ale będę 

starał się udowodnić, że mimo złożoności, istnieją pewne 

rzeczy pomagające w zrozumieniu. istnieją pewne rzeczy 

pomagające w zrozumieniu.” 

 

Some parts (words or full phrases or even whole sentences) 

were duplicated. Furthermore, there were segments containing 

repetitions of whole sentences inside a single segment. For 

instance:  

Sentence A. Sentence A. 

e.g. 
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Zakumulują się u tych najbardziej pijanych i skąpych. 

Zakumulują się u tych najbardziej pijanych i skąpych.  

or 

Part A, Part B, Part B, Part C 

e.g. 

” Matka może się ponownie rozmnażać, ale jak wysoką cenę 

płaci, przez akumulację toksyn w swoim organizmie - przez 

akumulację toksyn w swoim organizmie - śmierć pierwszego 

młodego.  

 

Overall, in the train set we found about 7% of spelling 

errors and about 15% of insertion errors. Luckily such 

problems occur only on the Polish side of the corpora. In our 

opinion the pre-processing tools used to align the corpus were 

not adjusted for the Polish language. Cleaning those problems 

increases BLEU score by the factor of 1,5 – 2. 

The number of unique Polish words and their forms was 

144,115 and 59,296 English unique word forms. The 

disproportionate vocabulary sizes are also a challenge 

especially in translation from English to Polish. 

Another problem is that the TED Talks do not have any 

specific domain. Statistical Machine Translation by definition 

works best when very specific domain data is used. The data 

we have is a mix of various, unrelated topics. This is most 

likely the reason why we cannot expect big improvements 

with this data and generally low scores in translation quality 

metrics. 

There is not much focus on Polish in the campaign, so 

there is almost no additional data in Polish in comparison to a 

huge amount of data in, for example, French or German. At 

first we used perplexity measurement metrics to determine the 

data we obtained. Some of the data we were able to obtain 

from the OPUS [12] project page, some from another small 

projects and the rest was collected manually using web 

crawlers. We created those corpora and used them. What we 
created was: 

• A Polish – English dictionary (bilingual parallel) 

• Additional (newer) TED Talks data sets not included in 

the original train data (we crawled bilingual data and 
created a corpora from it) (bilingual parallel) 

• E-books (monolingual PL + monolingual EN) 

• Proceedings of UK House of Lords (monolingual EN) 

• Subtitles for movies and TV series (monolingual PL) 

• Parliament and senate proceedings (monolingual PL) 

• Wikipedia Comparable Corpus (bilingual parallel) 

• Euronews Comparable Corpus (bilingual parallel) 

• Repository of PJIIT’s diplomas (monolingual PL) 

• Many PL monolingual data web crawled from main web 

portals like blogs, chip.pl, Focus newspaper archive, 

interia.pl, wp.pl, onet.pl, money.pl, Usenet, Termedia, 

Wordpress web pages, Wprost newspaper archive, 

Wyborcza newspaper archive, Newsweek newspaper 

archive, etc.  

“Other” in the table below stands for many very small 

models merged together. In Table 1 we show the perplexity 

values of the obtained data with no smoothing (PPL in Table 

1) as well as smoothed with the Kneser-Ney algorithm 

(PPL+KN in Table 1). We used the MITLM [29] toolkit for 

that evaluation. As an evaluation set we used dev2010 data, 

which was used for tuning. Its dictionary covers 2861 words. 

EMEA are texts from the European Medicines Agency, 

KDE4 is a localization file of that GUI, ECB stands for 

European Central Bank corpus, OpenSubtitles [12] are movies 

and TV series subtitles, EUNEWS is a web crawl of the 

euronews.com web page and EUBOOKSHOP comes from 

bookshop.europa.eu. Lastly bilingual TEDDL is additional 

TED data. We ensured that this data was not overlapping with 

the test or development sets. As can be seen from the Table 1, 

all additional data has big perplexity values, so no astonishing 

improvements based only on data could be expected. 

Table 1: Data Perplexities for dev2010 data set 

Data set Dictionary PPL PPL + KN  

Baseline train.en 44,052 221 223 

EMEA 30,204 1738 1848 

KDE4 34,442 890 919 

ECB 17,121 837 889 

OpenSubtitles 343,468 388 415 

EBOOKS 528,712 405 417 

EUNEWS 21,813 430 435 

NEWS COMM 62,937 418 465 

EUBOOKSHOP 167,811 921 950 

UN TEXTS 175,007 681 714 

UK LORDS 215,106 621 644 

NEWS 2010 279,039 356 377 

GIGAWORD 287,096 582 610 

DICTIONARY 39,214 8629 8824 

OTHER 13,576 492 499 

WIKIPEDIA 682,276 9131 9205 

NEWSPAPERS 608,186 10066 10083 

WEB PORTALS 510,240 731 746 

BLOGS 76,697 3481 3524 

USENET 733,619 8019 8034 

DIPLOMAS 353,730 32345 32582 

TEDDL 47,015 277 277 

 

WIKIPEDIA and EUNEWS are parallel corpora extracted 

by us from comparable corpora. We were able to obtain 4,498 

topic-aligned articles from the Euronews and about 1M from 

the Wikipedia. The Wikipedia corpus was about 104MB in 

size and contained 475,470 parallel sentences. Its first version 

was acknowledged as permissible data for the IWSLT 2014 

evaluation campaign. The Euronews corpora contained 1,617 

bi-sentences. 

In order to extract the parallel sentence pairs we decided to 

facilitate Yalign Tool [26]. The Yalign tool was designed in 

order to automate parallel text mining process by finding 

sentences that are close translation matches from the 

comparable corpora. This opened up avenues for harvesting 

parallel corpora from sources like translated documents and 

the web. What is more Yalign is not limited to any language 

pair. But creation of own alignment models for two required 

languages is necessary. 

The Yalign tool was implemented using a sentence 

similarity metric that produces a rough estimate (a number 

between 0 and 1) of how likely it is for two sentences to be a 

translation of each other. Additionally it uses a sequence 

aligner, that produces an alignment that maximizes the sum of 

the individual (per sentence pair) similarities between two 

documents. Yalign’s main algorithm is actually a wrapper 

before standard sequence alignment algorithm [26]. 
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For the sequence alignment Yalign uses a variation of the 

Needleman-Wunch algorithm [27] to find an optimal 

alignment between the sentences in two given documents. The 

algorithm has polynomial time worst-case complexity and it 

produces an optimal alignment. Unfortunately it can’t handle 

alignments that cross each other or alignments from two 

sentences into a single one [27].  

Since the sentence similarity is a computationally 

expensive operation, the implemented variation of the 

Needleman-Wunch algorithm uses A* approach to explore the 

search space instead of using the classical dynamic 

programming method that would require N * M calls to the 

sentence similarity matrix. 

After the alignment, only sentences that have a high 

probability of being translations are included in the final 

alignment. The result is filtered in order to deliver high quality 

alignments. To do this, a threshold value is used, such that if 

the sentence similarity metric is low enough the pair is 

excluded. 

For the sentence similarity metric the algorithm uses a 

statistical classifier’s likelihood output and adapts it into the  

<0,1> range. 

The classifier must be trained in order to determine if a 

pair of sentences is translation of each other or not. The 

particular classifier used in the Yalign project was a Support 

Vector Machine. Besides being excellent classifier, SVMs can 

provide a distance to the separation hyperplane during 

classification, and this distance can be easily modified using a 

Sigmoid Function to return likelihood between 0 and 1 [28]. 

The use of a classifier means that the quality of the 

alignment depends not only on the input but also on the quality 

of the trained classifier. 

To train the classifier a good quality parallel data was 

necessary as well as a dictionary with translation probability 

included. For this purposes we used TED talks [3] corpora 

enhanced by us during the IWSLT’13 Evaluation Campaign 

[5]. In order to obtain a dictionary we trained a phrase table 

and extracted 1-grams from it. We used the MGIZA++ tool for 

word and phrase alignment. The lexical reordering was set to 

use the msd-bidirectional-fe method and the symmetrisation 

method was set to grow-diag-final-and for word alignment 

processing [5]. 

Before use of a training translation model, preprocessing 

that included removal of long sentences (set to 80 words) had 

to be performed. The Moses toolkit scripts [7] were used for 

this purpose.  

The final processing corpus included 185,527 lines from 

the Polish to English corpus. However, the disproportionate 

vocabulary sizes remained. One of the solutions to this 

problem (according to work of Bojar [10]) was to use stems 

instead of surface forms in order to reduce the Polish 

vocabulary size. Such a solution also requires a creation of an 

SMT system from Polish stems to plain Polish. Subsequently, 

we used PSI-TOOLKIT [9] to convert each Polish word into a 

lemma. The toolkit is a tool chain for automatic processing of 

Polish language and to lesser extent other languages like 

English, German, French, Spanish and Russian (with the 

focus on machine translation). The tool chain includes 

segmentation, tokenization, lemmatization, shallow parsing, 

deep parsing, rule-based machine translation, statistical 

machine translation, automatic generation of inflected forms 

from lemma sequences and automatic post edition. The toolkit 

was used as an additional information source for the SMT 

system preparation. It can be also used as a first step for 

implementing a factored SMT system that, unlike a phrase-

based system, includes morphological analysis, translation of 

lemmas and features as well as generation of surface forms. 

Incorporating additional linguistic information should 

effectively improve translation performance [8]. 

 

2.1. Polish lemma extraction 

As previously mentioned, lemma extracted from Polish words 

are used instead of surface forms to overcome the problem of 

the huge difference in vocabulary sizes. For Polish lemma 

extraction, a tool chain that included tokenization and 

lemmatization from PSI-TOOLS was used. 

These tools used in sequence provide a rich output that 

includes a lemma form of the tokens, prefixes, suffixes and 

morphosyntatic tags. Unfortunately unknown words like 

names or abbreviations or numbers, etc. are lost in the 

process. Also capitalization as well as punctuation does not 

remain. To preserve this relevant information we 

implemented a specialized tool that basing on differences 

between input and output of the PSI-TOOLS restored most of 

the lost information. The lemmatized version of the Polish 

training data was reduced to 36,065 unique words and the 

polish language model was also reduced from 156,970 to 

32,873 unique words. The results of this work are presented in 

Table 2 and in Table 3. Each experiment was done only on 

the baseline data sets in PL->EN and EN->PL direction. The 

system settings are described in Chapter 5. The year column 

shows the test set that was used in the experiment, if a year 

has L suffix in means that it is lemmatized version of the 

baseline system. 

Table 2: PL Lemma to EN translation results 

YEAR BLEU NIST TER MET 

2010 16,70 5,70 67,83 49,31 

2010L 13,33 4,68 70,86 46,18 

2011 20,40 5,71 62,99 53,13 

2011L 16,21 5,11 67,16 49,64 

2012 17,22 5,37 65,96 49,72 

2012L 13,29 4,64 69,59 45,78 

2013 18,16 5,44 65,50 50,73 

2013L 14,81 4,88 68,96 47,98 

2014 14,71 4,93 68,20 47,20 

2014L 11,63 4,37 71,35 44,55 

Table 3: EN to PL Lemma translation results 

YEAR BLEU NIST TER MET 

2010 9,95 3,89 74,66 32,62 

2010L 12,98 4,86 68,06 40,19 

2011 12,56 4,37 70,13 36,23 

2011L 16,36 5,40 62,96 44,86 

2012 10,77 3,92 75,79 33,80 

2012L 14,13 4,83 69,76 41,52 

2013 10,96 3,91 75,95 33,85 

2013L 15,21 5,02 68,17 42,58 

2014 9,29 3,47 82,58 31,15 

2014L 12,35 4,44 75,27 39,12 

 

Our experiments show that lemma translation to EN in 

each test set decreased the evaluation scores, contrary 

translation from EN to lemma for each set increased the 

translation quality. Such solution requires also training of a 

system from lemma into PL in order to restore proper surface 
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forms of the words. We trained such system as well and 

evaluated it on official tests sets from years 2010-2014 and 

tuned on 2010 development data. The results for that system 

are presented in Table 4. Even that the scores are relatively 

high the results do not seem to be satisfactory enough to 

provide overall improvement of EN-LEMMA-PL pipeline 

over direct translation from EN to PL. 

Table 4: Lemma to PL translation results 

YEAR BLEU NIST TER MET 

2010 41,14 8,72 31,28 65,25 

2011 41,68 8,68 30,64 65,99 

2012 38,87 8,38 32,23 64,18 

2013 40,27 8,30 31,67 64,44 

2014 37,78 8,01 33,17 62,78 

 

To confirm our prediction we conducted additional 

experiment in which the English sentences were first 

translated into lemma and secondly we translated lemma into 

Polish surface forms. The results of such combined translation 

are showed in Table 5. They decrease the translation quality 

in comparison to direct translation from EN to PL. What is 

more by lemmatizing PL we lost much significant 

information. As a part of the future work we intend to 

lemmatize only not very common words, but we are still 

aware of that most of the Polish words will appear quire rare 

due to many word forms. We anticipate that most of the 

words will be replaced by lemmas. Unfortunately also the 

quality of lemma to surface is of low quality. The Polish 

declension is complex e.g. sometimes even a steam is 

changed doe to phonetic/phontactic rules. 

Table 5: EN -> PL Lemma -> PL pipeline translation 

YEAR BLEU NIST TER MET 

2010 7,47 3,45 76,17 29,16 

2011 9,67 3,84 72,45 32,25 

2012 8,26 3,39 78,40 29,60 

2013 8,83 3,54 77,11 30,61 

2014 6,98 3,10 83,81 27,71 

     

3. English Data Preparation 

The preparation of the English data was definitively less 

complicated than for Polish. We developed a tool to clean the 

English data by removing foreign words, strange symbols, 

etc. Compare to Polish, the English data contained 

significantly less errors. Nonetheless some problems needed 

to be removed, most problematic were translations into 

languages other than English and strange UTF-8 symbols. 

We also found few duplications and insertions inside single 

segments. 

4. Evaluation Methods 

Metrics are necessary to measure the quality of translations 

produced by the SMT systems. For this, various automated 

metrics are available to compare SMT translations to high 

quality human translations. Since each human translator 

produces a translation with different word choices and orders, 

the best metrics measure SMT output against multiple 

reference human translations. For scoring purposes we used 

four well-known metrics that show high correlation with 

human judgments. Among the commonly used SMT metrics 

are: Bilingual Evaluation Understudy (BLEU), the U.S. 

National Institute of Standards & Technology (NIST) metric, 

the Metric for Evaluation of Translation with Explicit 

Ordering (METEOR), and Translation Error Rate (TER).  

According to Koehn, BLEU [11] uses textual phrases of 

varying length to match SMT and reference translations.  

Scoring of this metric is determined by the weighted averages 

of those matches. [13] 

To encourage infrequently used word translation, the 

NIST [13] metric scores the translation of such words higher 

and uses the arithmetic mean of the n-gram matches. Smaller 

differences in phrase length incur a smaller brevity penalty. 

This metric has shown advantages over the BLEU metric.  

The METEOR [13] metric also changes the brevity 

penalty used by BLEU, uses the arithmetic mean like NIST, 

and considers matches in word order through examination of 

higher order n-grams. These changes increase score based on 

recall. It also considers best matches against multiple 

reference translations when evaluating the SMT output.  

TER [14] compares the SMT and reference translations to 

determine the minimum number of edits a human would need 

to make for the translations to be equivalent in both fluency 

and semantics. The closest match to a reference translation is 

used in this metric. There are several types of edits 

considered: word deletion, word insertion, word order, word 

substitution, and phrase order.  

5. Experimental Results 

A number of experiments were performed to evaluate various 

versions for our SMT systems. The experiments involved a 

number of steps. Processing of the corpora was 

accomplished, including tokenization, cleaning, factorization, 

conversion to lower case, splitting, and a final cleaning after 

splitting. Training data was processed, and the language 

model was developed. Tuning was performed for each 

experiment. Lastly, the experiments were conducted. 

The baseline system testing was done using the Moses 

open source SMT toolkit with its Experiment Management 

System (EMS) [15]. The SRI Language Modeling Toolkit 

(SRILM) [19] with an interpolated version of the Kneser-Key 

discounting (interpolate –unk –kndiscount) was used for 5-

gram language model training. We used the MGIZA++ tool 

for word and phrase alignment. KenLM [17] was used to 

binarize the language model, with a lexical reordering set to 

use the msd-bidirectional-fe model. Reordering probabilities 

of phrases are conditioned on lexical values of a phrase. It 

considers three different orientation types on source and target 

phrases like monotone(M), swap(S) and discontinuous(D). 

The bidirectional reordering model adds probabilities of 

possible mutual positions of source counterparts to current 

and following phrases [18]. MGIZA++ is a multi-threaded 

version of the well-known GIZA++ tool [20]. The 

symmetrization method was set to grow-diag-final-and for 

word alignment processing. First two-way direction 

alignments obtained from GIZA++ were intersected, so only 

the alignment points that occurred in both alignments 

remained. In the second phase, additional alignment points 

existing in their union were added. The growing step adds 

potential alignment points of unaligned words and neighbors. 

Neighborhood can be set directly to left, right, top or bottom, 

as well as to diagonal (grow-diag). In the final step, alignment 

points between words from which at least one is unaligned are 
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added (grow-diag-final). If the grow-diag-final-and method is 

used, an alignment point between two unaligned words 

appears. [15] 

We conducted about a hundred of experiments using test 

and development 2010 data to determine the best possible 

translation settings from Polish to English and the reverse. For 

experiments we used Moses SMT with Experiment 

Management System (EMS) [15]. Starting from baseline 

(BLEU: 16,70) system tests, we raised our score through 

extending the language model with more data and by 

interpolating it linearly. We determined that not using lower 

casing, changing maximum sentence length to 95, maximum 

phrase length to 6 improves the BLEU score. Additionally we 

changed the language model order from 5 to 6 and changed the 

discounting method from Kneser-Ney to Witten-Bell. Those 

setting proved to increase translation quality for PL-EN 

language pair in [5]. In the training part, we changed the 

lexicalized reordering method from msd-bidirectional-fe to 

hier-mslr-bidirectional-fe. The system was also enriched with 

Operation Sequence Model (OSM) [21]. The motivation for 

OSM is that it provides phrase-based SMT models the ability 

to memorize dependencies and lexical triggers, it can search 

for any possible reordering, and it has a robust search 

mechanism. Additionally, OSM takes source and target 

context into account, and it does not have the spurious phrasal 

segmentation problem. The OSM is valuable especially for the 

strong reordering mechanism. It couples translation and 

reordering, handles both short and long distance reordering, 

and does not require a hard reordering limit [21]. What is more 

we used Compound Splitting feature [8]. Tuning was done 

using MERT tool with batch-mira feature and n-best list size 

was changed from 100 to 150. This setting and language 

models produced the score of BLEU equal to 21,57. Lastly we 

used all parallel data we were able to obtain. We adapted it 

using Modified Moore Levis Filtering [8]. From our 

experiments we conducted that best results are obtained when 

sampling about 150,000 bi-sentences from in-domain corpora 

and by using filtering after the word alignment. The ratio of 

data to be kept was set to 0,8 obtaining our best score equal to 

23,74. 

Because of a much bigger dictionary, the translation from 

EN to PL is significantly more complicated. Our baseline 

system score was 9,95 in BLEU. Similarly to PL-EN direction 

we determined that not using lower casing, changing 

maximum sentence length to 85, maximum phrase length to 7 

improves the BLEU score. Additionally we set the language 

model order from 5 to 6 and changed the discounting method 

from Kneser-Ney to Witten-Bell. In the training part, we 

changed the lexicalized reordering method from msd-

bidirectional-fe to tgttosrc. The system was also enriched with 

Operation Sequence Model (OSM). What is more we used 

Compund Splitting feature and we did punctuation 

normalization. Tuning was done using MERT tool with batch-

mira feature and n-best list size was changed from 100 to 150. 

Training a hierarchical phrase-based translation model also 

improved results in this translation scenario [16]. 

 This setting and language models produced the score of 

BLEU equal to 19,81. Lastly we used all parallel data we 

were able to obtain. We adapted it using Modified Moore 

Levis Filtering [8]. From our experiments we conducted that 

best results are obtained when sampling about 150,000 bi-

sentences from in-domain corpora and by using filtering after 

the word alignment. The ratio of data to be kept was set to 0,9 

obtaining our best score equal to 22,76. 

Table 6: Polish-to-English translation 

System Year BLEU NIST TER METEOR 

BASE 2010 16,70 5,70 67,83 49,31 

BEST 2010 23,74 6,25 54,63 57,06 

BASE 2011 20,40 5,71 62,99 53,13 

BEST 2011 28,00 6,61 51,02 61,23 

BASE 2012 17,22 5,37 65,96 49,72 

BEST 2012 23,15 5,55 56,42 56,49 

BASE 2013 18,16 5,44 65,50 50,73 

BEST 2013 28,62 6,71 57,10 58,48 

BASE 2014 14,71 4,93 68,20 47,20 

BEST 2014 18,96 5,56 64,59 51,29 

 

The experiments on our best systems were conducted with 

the use of the test data from years 2010-2014. These results 

are showed in Table 6 and Table 7, respectively, for the 

Polish-to-English and English-to-Polish translations. They are 

measured by the BLEU, NIST, TER and METEOR metrics.  

Note that a lower value of the TER metric is better, while the 

other metrics are better when their values are higher. 

Table 7: English-to-Polish translation 

System Year BLEU NIST TER METEOR 

BASE 2010 9,95 3,89 74,66 32,62 

BEST 2010 22,76 5,83 60,23 49,18 

BASE 2011 12,56 4,37 70,13 36,23 

BEST 2011 29,20 6,54 55,02 51,48 

BASE 2012 10,77 3,92 75,79 33,80 

BEST 2012 26,33 5,93 60,88 47,85 

BASE 2013 10,96 3,91 75,95 33,85 

BEST 2013 26,61 5,99 59,94 48,44 

BASE 2014 9,29 3,47 82,58 31,15 

BEST 2014 16,59 4,48 73,66 38,85 

      

6. Discussion & Conclusions 

Several conclusions can be drawn from the experimental 

results presented here. Automatic and manual cleaning of the 

training files has some positive impact, among the variations 

of the experiments [5]. Obtaining and adapting additional bi-

lingual and monolingual data produced the biggest influence 

on the translation quality itself. In each direction using OSM 

and adapting training and tuning parameters was necessary 

and it could not be simply replicated from other experiments. 

What was uncommon and surprising the punctuation 

normalization and usage of the hierarchical phrase model 

improved the quality only in translation into the Polish 

language and had negative results in opposite direction 

experiments.  

What is more, converting Polish surface forms of words to 

lemma reduces the Polish vocabulary, which should improve 

the English-to-Polish translation performance and opposite. 

The Polish to English translation typically outscores the 

English to Polish translation, even on the same data. It is also 

what we would expect in our experiments with lemma, 

nonetheless our initial assumptions were not confirmed in 

empirical tests. 

Several potential opportunities for future work are of 

interest. Additional experiments using extended language 

models are warranted to determine if this improves SMT 

scores. We are also interested in developing some more web 

crawlers in order to obtain additional data that would most 

likely prove useful. What is more, the Wikipedia corpus we 
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created is still very noisy. We are currently working on 

cleaning it semi-automatically. 

In future we intend to try clustering the training data into 

word classes in order to obtain smoother distributions and 

better generalizations. Using class-based models was shown 

to be useful when translating into morphologically rich 

languages like Polish [23]. We are also planning on using 

Unsupervised Transliteration Models, that proved to be quite 

useful in MT for translating OOV words, for disambiguation 

and for translating closely related languages [24]. This feature 

would most likely help us overcome difference in the 

vocabulary size, especially when translating into PL. Using a 

Fill-up combination technique (instead of interpolation) that is 

useful when the relevance of the models is known a priori: 

typically, when one is trained on in-domain data and the 

others on out-of-domain data is also in our interests [25]. 

Neural machine translation is a recently proposed 

approach to machine translation. Unlike the traditional 

statistical machine translation, the neural machine translation 

aims at building a single neural network that can be jointly 

tuned to maximize the translation performance. The models 

proposed recently for neural machine translation often belong 

to a family of encoder-decoders and consists of an encoder 

that encodes a source sentence into a fixed-length vector from 

which a decoder generates a translation. We would like to test 

such methodology on PL-EN language pair in accordance to 

[22]. 
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Abstract

This work describes the statistical machine translation
(SMT) systems of RWTH Aachen University developed for
the evaluation campaign International Workshop on Spoken
Language Translation (IWSLT) 2014. We participated in
both the MT and SLT tracks for the English→French and
German→English language pairs and applied the identical
training pipeline and models on both language pairs. Our
state-of-the-art phrase-based baseline systems are augmented
with maximum expected BLEU training for phrasal, lexical
and reordering models. Further, we apply rescoring with
novel recurrent neural language and translation models. The
same systems are used for the SLT track, where we addition-
ally perform punctuation prediction on the automatic tran-
scriptions employing hierarchical phrase-based translation.
We are able to improve RWTH’s 2013 evaluation systems
by 1.7-1.8% BLEU absolute.

1. Introduction
We describe the statistical machine translation (SMT) sys-
tems developed by RWTH Aachen University for the evalu-
ation campaign of IWSLT 2014. We participated in the ma-
chine translation (MT) track and the spoken language trans-
lation (SLT) track for the language pairs English→French as
well as German→English. A single training pipeline with
identical models using a state-of-the-art phrase-based trans-
lation engine has proven highly effective on all tasks. The
pipeline includes a hierarchical reordering model, word class
(cluster) language models, discriminative phrase training and
rescoring with novel recurrent neural language and transla-
tion models. For the spoken language translation task, the
ASR output is enriched with punctuation and casing. The en-
richment is performed by a hierarchical phrase-based trans-
lation system.

This paper is organized as follows. In Sections 2.1
through 2.3 we describe our translation software and baseline
setups. Sections 2.4 and 2.5 provide further details about our
discriminative phrase training and the recurrent neural net-
work models, which have proven very effective in the shared
task. Our experiments for each track are summarized in Sec-

tion 3 and we conclude with Section 4.

2. SMT Systems
For the IWSLT 2014 evaluation campaign, RWTH utilized
state-of-the-art phrase-based and hierarchical translation sys-
tems. GIZA++ [1] is employed to train word alignments. We
evaluate in case-insensitive fashion1, using the BLEU [2] and
TER [3] measures.

2.1. Phrase-based Systems

Our phrase based decoder is the implementation of the source
cardinality synchronous search (SCSS) procedure described
in [4] in RWTH’s open-source SMT toolkit Jane 2.32 [5] ,
which is freely available for non-commercial use. We use
the standard set of models with phrase translation proba-
bilities and lexical smoothing in both directions, word and
phrase penalty, distance-based reordering model, n-gram tar-
get language models and and enhanced low frequency feature
[6]. The parameter weights are optimized with MERT [7]
towards the BLEU metric. Additionally, we make use of a
hierarchical reordering model (HRM) [8], a high-order word
class language model (wcLM) [9], a discriminative phrase
training scheme (cf. Section 2.4) and rescoring with re-
current neural network language and translation models (cf.
Section 2.5).

2.2. Hierarchical Phrase-based System

For our hierarchical setups, we also employed the open
source translation toolkit Jane 2.3 [10]. In hierarchi-
cal phrase-based translation [11], a weighted synchronous
context-free grammar is induced from parallel text. In addi-
tion to contiguous lexical phrases, hierarchical phrases with
up to two gaps are extracted. The search is carried out with
a parsing-based procedure. The standard models integrated
into our Jane systems are: Phrase translation probabilities
and lexical smoothing probabilities in both translation direc-
tions, word and phrase penalty, binary features marking hi-

1We find case-insensitive evaluation more consistent with human percep-
tion of translation quality.

2http://www-i6.informatik.rwth-aachen.de/jane/
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erarchical phrases, glue rule, and rules with non-terminals
at the boundaries, extended low frequency feature and an
n-gram language model. We utilize the cube pruning algo-
rithm [12] for decoding.

2.3. Backoff language models

Each translation system uses three backoff language models
that are estimated with the KenLM toolkit [13] and are inte-
grated into the decoder as separate models in the log-linear
combination: A large general domain 5-gram LM, an in-
domain 5-gram LM and a 7-gram word class language model
(wcLM). All of them use interpolated Kneser-Ney smooth-
ing. For the general domain LM, we first select 1

2 of the
English Shuffled News, and 1

4 of the French Shuffled News
as well as both the English and French Gigaword corpora by
the cross-entropy difference criterion described in [14]. The
selection is then concatenated with all available remaining
monolingual data and used to build and unpruned language
model. The in-domain language models are estimated on the
TED data only. For the word class LM, we train 200 classes
on the target side of the bilingual training data using an in-
house tool similar to mkcls. With these class definitions,
we apply the technique shown in [9] to compute the wcLM
on the same data as the general-domain LM.

2.4. Maximum Expected BLEU Training

Discriminative training is a powerful method to learn a large
number of features with respect to a given error metric. In
this work we learn three types of features under a maximum
expected BLEU objective [15]. We perform discriminative
training on the TED portion of the data, which is high qual-
ity in-domain data of reasonable size. This makes training
feasible while at the same time providing an implicit domain
adaptation effect. Similar to [15], we generate 100-best lists
on the training data which are used as training samples for
a gradient based update method. A leave-one-out heuristic
[16] is applied to circumvent over-fitting. Here, we follow
an approach similar to [17], where each feature type is first
discriminatively trained, then condensed into a single feature
for the log-linear model combination and finally optimized
with MERT. In a first pass, we simultaneously train phrase
pair features and phrase-internal word pair features, adding
two models to the log-linear combination. Afterwards we
perform a second pass focusing on reordering, with the iden-
tical feature set as the HRM, resulting in an additional six
models for log-linear combination: Three orientation classes
(monotone, swap and discontinuous) in both directions. As
the training procedure is iterative, we select the best iteration
after performing MERT. In the tables in Section 3 we denote
the first pass as maxExpBleu phr+lex and the second pass as
maxExpBleu RO.
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Figure 1: Architecture of the deep recurrent bidirectional
translation model. By (+) and (−), we indicate a process-
ing in forward and backward time directions, respectively.
The inclusion of the dashed parts leads to a bidirectional
joint model, which was not applied in this work. A single
source projection matrix is used for the forward and back-
ward branches.

2.5. Recurrent Neural Network Models

All systems apply rescoring on 1000-best lists using recur-
rent language and translation models. The recurrency is
handled with the long short-term memory (LSTM) architec-
ture [18] and we use a class-factored output layer for in-
creased efficiency as described in [19]. All neural networks
were trained on the TED portion of the data with 2000 word
classes. In addition to the recurrent language model (RNN-
LM), we apply the deep bidirectional word-based translation
model (RNN-BTM) described in [20]. This requires a one-
to-one word alignment, which is generated by introduction
of ε tokens and using an IBM1 translation table. We ap-
ply the bidirectional version of the translation model, which
uses both forward and backward recurrency in order to take
the full source context into account for each translation deci-
sion. The language models are set up with 300 nodes in both
the projection and the hidden LSTM layer. For the BTM, we
use 200 nodes in all layers, namely the forward and back-
ward projection layers, the first hidden layers for both for-
ward and backward processing and the second hidden layer,
which joins the output of the directional hidden layers. The
architecture of the BTM network is shown in Figure 1.

3. Experimental Evaluation
3.1. English→French

For the English→French task, the word alignment was
trained with GIZA++ and we applied the phrase-based de-
coder implemented in Jane. We used all available parallel
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data for training the translation model. As backoff language
models, the baseline contains a general-domain LM, an in-
domain LM and a word class LM (wcLM), which are de-
scribed in Section 2.3. The hierarchical reordering model
(HRM) is also contained in the baseline. Experimental re-
sults are given in Table 1. By maximum expected BLEU
training of phrasal and lexical features, the baseline is im-
proved by 0.7% BLEU absolute on tst2010 and 1.5%
BLEU absolute on tst2011. Including the discriminatively
trained reordering model yields further gains of 0.3 and 0.1
BLEU points. The recurrent language model gives us an ad-
ditional 0.7 and 0.6 BLEU points and adding the recurrent
translation model, we get 0.7% and 0.2% BLEU absolute on
top. The observed improvements are confirmed on the blind
evaluation set tst2014, on which the scores were com-
puted by the workshop organizers. Thus, by applying only
two general and language-independent methods, our state-
of-the-art baseline is improved by 2.4% BLEU on tst2010,
3.5% BLEU on tst2011 and 2.7% BLEU on tst2014.
Altogether compared to last year [21] our translation perfor-
mance was increased by 1.7% BLEU and 1.5% TER absolute
on tst2010.

3.2. German→English

Similar to English→French, the word alignment was trained
with GIZA++ and we applied the phrase-based decoder im-
plemented in Jane. We used all available parallel data for
training the translation model. The baseline contains three
backoff language models, namely a general-domain LM, an
in-domain LM and a word class LM as described in Section
2.3, and the hierarchical reordering model (HRM). In a pre-
processing step the German source was decompounded [22]
and part-of-speech-based long-range verb reordering rules
[23] were applied. In addition, we tuned our system on
two different development sets (dev2010 and dev2012).
Since the development set from 2010 is German translated
from English talks, dev2012 contains manual transcrip-
tions from German talks. As a real test set for the man-
ual transcription is missing, we will focus on the results
(cf. Table 2) for the dev2010-tuned system in the follow-
ing description. By maximum expected BLEU training of
phrasal and lexical features, the baseline is improved by 1.0%
BLEU absolute on tst2010 and 1.6% BLEU absolute on
tst2011. Including the discriminatively trained reorder-
ing model yields further gains of 0.4 and 0.2 BLEU points.
The recurrent language model gives us an additional 0.7 and
1.1 BLEU points and adding the recurrent translation model,
we get 0.7% and 0.6% BLEU absolute on top. Thus, we
were able to improve the state-of-the-art baseline by 2.8%
BLEU on tst2010 and 3.5% BLEU on tst2011 using the
same two general and language-independent methods as in
the English→French task. Compared to last year [21] our
translation performance was increased by 1.8% BLEU and
2.2% TER absolute on tst2010. However, we submitted
the system tuned on dev2012, which contains transcribed

and translated German TED-X talks and is therefore more
similar to the evaluation data. The improvements are similar
to the system tuned on dev2010. Unfortunatelly, they do
not carry over to the blind evaluation data tst2014 in the
same magnitude, where we only observe a 0.8% gain over
the baseline.

3.3. Spoken Language Translation (SLT)

RWTH participated in the English→French and
German→English SLT tasks. For both language pairs,
we reintroduced punctuation and case information before
the actual translation similar to [24]. However, we employed
a hierarchical phrase-based system with a maximum of one
nonterminal symbol per rule in place of a phrase-based
system. A punctuation prediction system based on hierar-
chical translation is able to capture long-range dependencies
between words and punctuation marks and is more robust for
unseen word sequences. The model weights are tuned with
standard MERT on 100-best lists. As optimization criterion
we used F2-Score rather than BLEU or WER. More details
can be found in [25].

Since punctuation prediction and recasing were applied
before the actual translation, our translation systems could
be kept completely unchanged and we were able to use our
final systems from the MT track directly.

4. Conclusion
RWTH participated in two MT tracks and two SLT tracks
of the IWSLT 2014 evaluation campaign. The baseline sys-
tems utilize our state-of-the-art phrase-based translation de-
coder and we were able to improve them by discriminative
phrase training (up to +1.8 BLEU) and recurrent neural net-
work models (up to +1.9 BLEU).

For the SLT track, the ASR output was enriched with
punctuation and casing information by a hierarchical trans-
lation system tuned on F2-Score.

All presented final systems are used in the EU-Bridge
system combination [26].
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Abstract

This paper reports results in building an Egyptian Arabic
speech recognition system as an example for under-resourced
languages. We investigated different approaches to build the
system using 10 hours for training the acoustic model, and
results for both grapheme system and phoneme system us-
ing MADA. The phoneme-based system shows better results
than the grapheme-based system. In this paper, we explore
the use of tweets written in dialectal Arabic. Using 880K
Egyptian tweets reduced the Out Of Vocabulary (OOV) rate
from 15.1% to 3.2% and the WER from 59.6% to 44.7%, a
relative gain 25% in WER.

1. Introduction
Arabic Automatic Speech Recognition (ASR) is a challeng-
ing task because of the lexical variety and data sparseness of
the language. Arabic can be considered as one of the most
morphologically complex languages [1]. With more than 300
million people speaking Arabic as a mother tongue it is the
5th most widely spoken language. Modern Standard Arabic
(MSA) is the official language amongst Arabic native speak-
ers, in fact MSA is used in formal events, such as newspa-
per, formal speech, and broadcast news. However, MSA is
very rarely used in day-to-day communication. Nearly all the
Arabic speakers use Dialectal Arabic (DA) in everyday com-
munication [2]. DA has many differences from MSA in mor-
phology, phonology and lexicon [3]. A significant challenge
in dialectal speech recognition is diglossia, in which the writ-
ten language differs considerably from the spoken vernacu-
lars [4]. The variance among different Arabic dialects such
as Egyptian, Levantine or Gulf has to be considered similar to
the variance among Romance languages [5]. There are many
varieties of dialectal Arabic distributed over the 22 countries
in the Arabic world, often several variants of the Arabic lan-
guage within the same country. There is also the difference
between Bedouin and Sedentary speech, which runs across
all Arabic countries. However, in natural language process-
ing, researchers have aggregated dialectal Arabic into five re-
gional language groups: Egyptian, Maghrebi, Gulf (Arabian
Peninsula), Iraqi, and Levantine [2][6].

A recent study [7] demonstrated that the use of the on-

line User Generated Content (UGC) can help to improve the
speech recognition by an average of 12.5% for the broad-
cast domain in French. This result on a high-resourced lan-
guage like French motivates us to consider a similar approach
for Egyptian dialectal Arabic, which has to be considered a
low-resource language. In this paper, we report results for
Egyptian Speech Recognition using limited speech data of
10 hours for training and 1.25 hours for development and
testing. There has been recent interest in Egyptian speech
recognition by [8][9][10]. This paper however differs from
previous work by:
1. Investigating the best practices for writing Egyptian or-
thography, conducting experiments on both Acoustic Model
(AM) and Language Model (LM), and releasing augmented
Conventional Orthography for Dialectal Arabic [11] CODA
guidelines for transcribing Egyptian speech.
2. Improving the dialectal Arabic speech recognition, and
showing significant reduction in the word error rate using mi-
cro blog data, particularly tweets.
3. Comparing the dialectal tweet collection and the approach
being used in classifying the tweets per country.
In addition, we release a tri-gram Egyptian language model,
as well Egyptian lexicon that has less than 4% OOV on the
test set.

2. Dialectal Arabic

Dialectal Arabic (DA) refers to the spoken language used for
daily communication in Arab countries. There are consider-
able geographical distinctions between DAs within countries,
across country borders, and even between cities and villages
as shown in Figure 11.

Recent research [12][2][13] is based on a coarser classi-
fication of Arabic dialects into five groups namely: Egyptian
(EGY), Gulf (GLF), Maghrebi (MGR), Levantine (LEV),
and Iraqi (IRQ). Other dialects are classified as OTHER (see
Figure 2). Zaidan [20] mentioned that this is one possible
breakdown but it is relatively coarse and can be further di-
vided into more dialect groups, especially in large regions
such as the Maghreb.

1http://en.wikipedia.org/wiki/Arabic_dialects

156

Proceedings of the 11th International Workshop on Spoken Language Translation
Lake Tahoe, December 4th and 5th, 2014



Figure 1: Different Arabic Dialects in the Arab World.

Figure 2: Major Arabic Dialect Groups.

3. Speech Data
3.1. Data Collection

The speech data used for this paper has been collected from
Aljazeera Arabic channels, using two setups: satellite record-
ing and internet video streaming from the Aljazeera.net web-
site. The speech is recorded using 16 khz sampling rate.
We looked at signals from both the satellite feed and online
streaming, and the difference in quality is rather small and
does not change anything in the quality of the audio as far as
speech recognition is concerned.

A database of 200 hours has been collected over a pe-
riod of six months in 2013 using the aforementioned setup.
This data has been manually segmented to avoid speaker
overlap, and avoid any non-speech parts such as music and
background noise. These segments have a wide range of du-
rations, from 3 seconds to 180 seconds. Speech segment
were then classified as either Egyptian, Levantine, Maghrebi,
Gulf, or MSA.

For the experiments described in this paper we used 12.5
hours of speech data classified to be in the Egyptian dialect,
which was split into three subsets; training 10 hours, test set
and development set 1.25 hours each. More details about the
data are provided in Table 1.
We report the WER in this paper for both test set and de-
velopment set; the first number is always for the test set and

second number for the development set.

Table 1: Speech Training Data Details.

Duration train(10h) test(1.25h) dev(1.25h)
#sentences 1385 147 176

#words 80K 9700 9809

3.2. Speech Transcription

As DA has no standard orthography or generally accepted
writing convention, we investigated two approaches for man-
ually transcribing Egyptian Speech data:
1) Verbatim transcription: The transcription is a faithful ren-
dering of the speech without paying attention to language
rules. E.g. the person name ��J
 	® �� , $fyq2 is typically pro-

nounced by Egyptian native speakers as Zù

	® �� $fy, replacing

the plosive /k/ in this context with a glottal stop hamza /A/.
In this writing convention, the word will then be written as it
has been pronounced, i.e. as $fy.
2) CODA-S (Augmented Coda for Speech Transcription):
This transcription follows the CODA transcription guidelines
[11], however, with some enhancements described below to
address the needs for transcribing speech. In this case the
transcription follows the language rules rather than the vari-
ant pronunciation.

CODA is mainly a framework for writing dialec-
tal Arabic, but when working with transcribers it be-
came apparent that some details were underspecified.
We therefore augmented the CODA guidelines to make
the rules clearer to the transcribers. We share these
modified transcription guidelines and make them avail-
able http://alt.qcri.org/resources/speech/
Egyptian/EgyptianTranscription_CODA.pdf

Here are some of the added explanations to the transcrip-
tion guidelines. The shared document summarizes all cases
by describing the case and providing samples of different
writings in addition to the correct writing, as shown in Ta-
ble 2, which shows one of the cases: Prefixes for future tense
(“h H” and “ è h”) that are attached to present verbs, should
be kept as they are without splitting from verbs

Table 2: Examples of augmented CODA Guidelines.

Various Writings Correct Writing

ù

�®J. J
k Hybqy, A ��®J. J
k HybqA ù��®J. J
k HybqY

ù��®J. K
 A �ë hA ybqY, ù

�®J. J
ë hybqy ù��®J. J
ë hybqY

More rules have been added to cover cases
not mentioned in the original CODA framework:

2Buckwalter encoding is used throughout the paper.
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Split letter “¨ E” that represents the preposition “ ú
�
Î «

ElY” when concatenated to a noun. Ex: 	�P
�
BA �« EAl>rD

→ 	�P
�
B@ ¨ E Al>rD.

Correct the suffix “ð w”, which is written instead of suffix

“ è h”. Ex: ñ	JÓ mnw → é 	JÓ mnh, and ðY	J« Endw → èY 	J«
Endh.

Restore “
�
@>” at the beginning of a present verb when the

verb is prefixed by “H. b”. Ex: P 	QîE. bhzr → P 	Që

A�K. b>hzr.

Replace suffix “ A�K
 yA” which indicates possession for the

first person with suffix “ �ø
 y ”. Ex: A�J
 	̄ fyA → �ú

	̄ fy .

Split negation article “ A �Ó mA” in all cases. Ex: ���
 	® Ó
mfy$ → ���
 	̄ A �Ó mA fy$, ��A �î �DÊÔ«A �Ó mAEmlthA$ → A �Ó��A�î �DÊÔ« mA EmlthA$.

The guidelines also contain a new rule for punctuation
marks and tags for hesitations or incomplete words, which is
very important in speech transcription task. Ex: ø
 @

�	P@ I. J
£�éJ
 	® 	k YK
 ½
�
Ëñ �®K
 �ék. A �g ú

�
Îg@ Tyb Azay AHlY HAjp yqwllk

yd xfyp → ! �éJ
 	® 	k YK
 ½
�
Ëñ �®K
 �ék. A �g ú

�
Îg

�
@ ?ø
 @

�	P@ I. J
£ Tyb
<zAy? >HlY HAjp yqwl lk yd xfyp!
Finally, we added a long list of common words with different
writings and the correct writing for each word. Ex: �èY» kdp,

@ �Y» kdA → èY» kdh, and �é 	�QK. brDp, ðXQK. brdw → é 	�QK.
brDh.

4. Dialectal Tweet Corpus

According to Twitter, the estimated number of Arabic mi-
croblogs is in excess of 15 million per day (private commu-
nication). To build a dialectal tweet corpus a multi-step pro-
cedure was used: 1) Arabic tweets were extracted by issuing
the query lang:ar against the Twitter API3.
2) Each tweet was classified as dialectal or not dialectal.
3) Dialectal tweets were mapped, if possible, to a country.
If such a mapping was possible, the tweet was classified as
being written in the dialect associated with that country ac-
cording to Figure 2.

In more detail: To perform step 2, dialectal words
were extracted from the Arabic Online Commentary Dataset
(AOCD) described in [20]. Examples of words used in di-
alects: ø
 X dy, 	àA ���« E$An, ½J
ë hyk, ���
@ Ay$,ñ» @ Ako, ñ	J ��
$nw, ��@ �ð wA$ etc. As shown in [14], many of these dialectal
words are used in more than one dialect. I.e. these words do
not map a tweet uniquely to a dialect. For example the word

3http://dev.twitter.com/

“ø
 X dy” is used in Egypt and Sudan, and the word “ 	àA ���«
E$An” is used in Egypt and Arab Gulf countries etc.
If a tweet has at least one dialectal word, it was considered
as dialectal tweet.

In step 3 user location in his/her profile was harvested
and an attempt was made to identify the country with the
aid of the GeoNames4 geographical database. For examples:
dialectal tweets with user locations like 	�A �K
Q Ë @ AlryAD,

Riyadh, KSA, 	P @
�
A �j. mÌ'@ AlHjAAz are mapped to Saudi Arabia

and thereby to Gulf Arabic.
Applying the 3 filtering steps a corpus of size 6.5M

tweets was collected during March 2014. The classification
resulted in the following distribution: 3.99M tweets for Saudi
Arabia (SA) (or 61% of the corpus size), 880K tweets for
Egypt (EG) (13%), 707K tweets for Kuwait (KW) (11%),
302K for Arab Emirates (AE) (5%), etc. Tweets distribution
is shown in Figure 3.

Using CrowdFlower5 and 3 judges from Egypt we eval-
uated the accuracy for the automatic classification. Using
6,000 tweets classified as Egyptian, the achieved precision
was 94%.

Figure 3: Dialectal Tweets Distribution Percentages.

5. Speech Recognition
This section describes the details of the speech recognition
system, esp. the acoustic model training and the language
models used in the experiments.

5.1. Language Modeling

Following [7] we wanted to test the impact of using tweets
when building the language model for the speech recognition
system. This leads to a number of questions: Is it better to
use all dialectal tweets across the different dialects or is it
better to use only the tweets in the matching dialect? How
much do we gain by using more data? Does normalizing the
tweets matter?

4http://www.geonames.org/
5https://crowdflower.com
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5.1.1. Training Language Models

We build standard trigram LMs with Kneser-Ney smoothing
using SRI LM toolkit [18]. For interpolating LMs, the devel-
opment set was used to tune the weight for the linear interpo-
lation. In such cases we report only test set results, whereas
in other cases we report numbers for both development and
test set.

5.1.2. Type/Token Ratios

To answer the questions raised above we analyzed and
compared several copora:

1) Speech data in verbatim format.
2) Speech data in CODA-S format.
3) Egyptian tweets without normalization.
4) Egyptian tweets with normalization, where we use

the normalization method described in [19].
5) MSA sample, collected from the last 5 years of

Aljazeera website.

One concern in statistical modeling is always data sparse-
ness. When building language models data sparseness can
be expressed in terms of type/token ratio. The higher the
type/token ratio, the sparser the data becomes for LM train-
ing.

Figure 4: Type Token Ratios for Various Text Samples.

Figure 4 compares the type/token ratios across all the
aforementioned corpora. This diagram shows how the vo-
cabulary (number of types) grows as the corpus (number of
tokens) grows. A number of observations can be made from
this graph:
1) As expected, speech data shows a slower vocabulary
growth compared to text data.
2) Using the CODA-S transcriptions reduces the type/token
ratio, which should be benefitial for the performance of the
speech recognition system.
3) The tweet corpus shows a higher type/token ratio than both

speech and web-text corpora. This was not necessarily ex-
pected and could indicate that variants in writing are a major
factor in dialectal tweets.
4) Normaling tweets had only a minimal effect in improving
the type/token ratio. Perhaps this could be improved with a
tweet-optimized normalizer rather than the simple one [19]
used here.

5.1.3. Out of Vocabulary Rates and Perplexities

In the next step we investigated the benefit of going towards
larger vocabularies, also comparing Egyptian-only tweets
(TweetsEGY) versus all dialectal tweets (TweetsALL). In
this comparison we looked at OOV rates and at LM perplex-
ities, which are based on interpolated LMs: one LM build
on the speech corpus in CODA-S format, one LM build on a
subset of the tweets.

As shown in Table 3 the Egyptian tweets have better re-
sults on the Egyptian test set. While the gains are not very big
the difference actually grows with larger vocabulary sizes.
For example the drop in OOV from TweetsAll to TweetsEGY
is 15% for the 30K corpus, yet 20% for the 400k corpus. The
perplexity drop is even more pronounced, going from 1.3%
on the 30k corpus to 5.1% on the 400k corpus.

Table 3: Compare tweetsEGY to tweetsAll LM.

Data Vocab Perplexity OOV
ALL 30K 1096 11.6%
EGY 1082 10.2%

ALL 50K 1269 9.4%
EGY 1242 8.4%

ALL 100K 1549 7.2%
EGY 1547 6%

ALL 200K 1891 5.3%
EGY 1834 4.2%

ALL 400K 2157 4.0%
EGY 2047 3.2%

Numbers reported in Table 3 are for the test data only, as
we used it to tune the LM interpolation for the training data
LM and tweet data LM.

The 400K interpolated LM and the corresponding lexi-
con have been released on XXX web portal 6 .

5.2. Acoustic Modeling

Our acoustic models are trained with the standard 13-
dimensional Cepstral Mean-Variance Normalized (CMVN)

6Hidden for annonymous reviewing
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Mel-Frequency Cesptral Coefficients (MFCC) features with-
out energy, and its first and second derivatives. For each
frame, we also include its neighboring +/-4 frames and ap-
ply Linear Discriminative Analysis (LDA) transformation to
project the concatenated frames to 40 dimensions, followed
by Maximum Likelihood Linear Transform (MLLT). We use
this setting of feature extraction for all models trained in our
system. Speaker adaptation is also applied with feature-space
Maximum Likelihood Linear Regression (fMLLR).

Our system includes all conventional models supported
by KALDI [15]: diagonal Gaussian Mixture Models
(GMM), subspace GMM (SGMM) and Deep Neural Net-
work (DNN) models. Training techniques including discrim-
inative training such as boosted Maximum Mutual Informa-
tion (bMMI), Minimum Phone Error (MPE), and Sequential
Training for DNN are also employed to obtain the best num-
ber.

These models are all standard 3-states context-dependent
triphone models. The GMM-HMM model has about 9K
Gaussians for 1.8K states; the SGMM-HMM model has 4.5K
states and 40K total substates.

We studied two ways of modeling the speech:
1) grapheme-based modeling, where each character repre-
sents a model. In this system we have 36 speech models
plus one model for silence. The 36 models represent the 36
unique characters, which appear in our speech training data.
2) We also studied a phoneme-based system, where we pre-
processed the training text using the Morphological Anal-
ysis and Disambiguation for Arabic (MADA) toolkit [16],
which has been used to build a vowelized dictionary. A rule-
based vowelized to phonetized (V2P) mapping was then used
to generate the final lexicon. The phoneme system has 36
phones: 35 speech phonemes and one phoneme for silence.

It is worth mentioning that MADA was developed for
MSA and therefore may not the best tool for pre-processing
dialectal Arabic. We learnt about MADAMIRA, which
merges MADA [16] and AMIRA [17]. This tool provides
linguistic information such as tokenization, diacritization,
and part-of-speech tagging for each Arabic word received
in corpus, which supports Egyptian text. However due to
license restrictions, we were unable to use it in our experi-
ments.

Table 4: Comparing grapheme-based and phoneme-based
systems, both with CODA-S transcriptions.

Train data LM Grapheme Phoneme
1st pass WER 62.47% 51.27%

68.41% 58.14%
2nd pass WER 59.63% 47.73%

64.68% 53.73%

Table 4 shows that the phoneme system outperforms the
grapheme system substantially with 20% relative reduction
in WER. One reason behind this gain is that in Arabic the

correspondence between phoneme and grapheme is weak.
due to the short vowels, whic are not written. Consequently,
mapping each grapheme as a unit will fall short to model in
the GMM the different variants occuring in the training data.
Also, the grapheme system needs more contexts to disam-
biguate between phonemes.

Although this is a nice reduction in WER, the range of
the error is still high, which is not a surprise given the high
OOV rate and perplexity. Which raises the question: is it
possible to use the Egyptian tweets to build better language
model to improve the dialect speech recognition? This will
be addresssed in the experiments described in the next sec-
tion.

6. Experiments
6.1. CODA-S and Verbatim Comparison

In an attempt to depict which approach is more appropriate
to use for transcribing the Egyptian speech, we used two
techniques to evaluate best approach by reporting OOV,
Perplexity (PP) and ASR system and report WER.
a- Evaluating using Language Model only (LM) the test and
dev set with the collected Egyptian tweets, and report OOV
and PP. We used Egyptian tweets to build trigram LM, more
details about Egyptian tweets in section 4, and LM in section
5. We report PP and OOV for both CODA-S and verbatim
transcription convention, and as shown in Table 5. The first
value refers to test set and the second to dev set. CODA-S is
getting better results in both PP and OOV.

Table 5: PP & OOV for CODA-S and Verbatim. (Type: 395K
words, Tokens: 9.5M words)

Verbatim CODA-S
PP 6729 5837

6978 6031

OOV 6.8% 4.7%
6.3% 4.6%

b- Building Grapheme based speech recognition, and re-
port WER.
For the speech, we investigate WER at different stages of the
Acoustics Model (AM) process, however, we report only the
WER at the very last stage which is Deep Neural Network
DNN with Minimum Phoneme Error MPE. We report the
WER at first pass and the second pass, again the first value
refers to test set and the second to dev set. More details about
the speech recognition system are covered in section 5.

Table 4 shows that the number of words in the verba-
tim transcription is 80.4K words, while the total number of
words in the CODA-S transcription is 81K words. Although
there is a small increase in the amount of words, there is a de-
crease in the vocabulary size from 18.6K words in verbatim
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text to 17.5K in the CODA-S text, which represents nearly
6% reduction. This is due to more consistency in writing the
text which consequently reduces the sparseness in the text.
It is worth mentioning that the WER comparison may not be
fair measure by itself as it is impacted by Acoustic Modeling
AM as well as Language Modeling LM. Having said that,
in this setup we used grapheme based AM approach in both
systems to be consistent with AM, and reduce the acoustic
influence on the conclusion. Also, best WER does not nec-
essary mean the best orthographic representations. But, au-
thors found WER could be an extra measure to consider. It is
clear from Table 4 that WER, PP, and OOV in the CODA-S
format are consistently outperforming the verbatim transcrip-
tion, which was a go-ahead signal for us to use the CODA-S
as baseline for all our further experiment.

Table 6: WER for CODA-S and verbatim

Verbatim CODA-S
Token 80.4K 81K
Type 18.6K 17.5K

1st pass WER 64.78% 62.47%
69.77% 68.41%

2nd pass WER 61.20% 59.63%
65.98% 64.68%

Perplexity 957 862
976 855

OOV 16.7% 15.1%
16.6% 15.4%

6.2. Grapheme versus Phoneme based System

At this stage, we see the best AM system is the phoneme
system and the best LM is the 400K vocabulary for the in-
terpolated LM. So, the next step is to use an interpolated LM
with the phoneme system and expect that the gain in both LM
and AM will propagate to the final system. One challenge in
doing so is that we have to pre-process tweetsEG by MADA
to generate a lexicon for the phoneme system. However, as
already mentioned, MADA is not the best tool to vowelize
Egyptian dialectal Arabic. So, we compared both systems in
Table 4 with the 400K interpolated LM and get the WER as
shown in Table 7.

Table 7: Compare Grapheme and Phoneme CODA-S Sys-
tems Using 400K Interpolated LM.

Tweet interpolated LM Grapheme Phoneme
1st pass WER 47.31% 56.22%

54.26% 62%
2nd pass WER 44.71% 52.73%

50.62% 58.60%

We see the LM helped the Grapheme system substan-
tially and reduced the WER by more than 25% relative in

test set (from 59.63% shown in Table 4 to 44.71% shown in
Table 7), and more than 21% relative reduction in develop-
ment set (from 64.68% shown in Table 4 to 50.62% shown in
Table 7) in the development set. In the phoneme system this
gain from the tweets LM has not only vanished, but we get an
increase in error rate by 10% and 9% relative in test set and
development set. At this time we assume that this increase in
WER stems from the fact that we do not have access to a rea-
sonable Egyptian vowelizer, nor a nice tool that can convert
dialectal Egyptian tweets into the CODA-S format.

6.3. TweetsEG versus TweetsAll

We have also investigated the importance of doing dialect
detection for the tweets, and compared the WER using the
Egyptian tweets versus random selection for any Arabic
tweets. We see in Table 8, the dialect identification does give
us some mileage. We can see a difference in WER of about
3 points absolute across both decoder passes. We report the
WER on the test set only as the development set has been
used to tune lambda for the linear interpolation.

Table 8: Compare tweetsEG WER versus tweetsAll.

Interpolated LM Grapheme EG Grapheme All
1st pass WER 47.31% 50.3%
2nd pass WER 44.71% 47.2%

7. Conclusion
Dialectal Arabic speech recognition is a challenging task
when analyzing the available resources. In this paper, we re-
port significant reduction in WER by approaching different
aspects of the challenge: we standardize augmented CODA
guidelines for transcribing Egyptian speech to reduce the im-
pact of diglossia. We used tweets for improved vocabulary
coverage and significantly reduced WER. Using specifically
tweets classified as being written in the Egyptian dialect gave
lower WER than using tweets across all dialects. We released
the language model as well as the lexicon used in this paper.
In future work, we plan to work on better dialectal vowelizer
to be able to generate lexicons for different dialects. We will
also investigate how to convert tweets into the CODA-S for-
mat automatically. Given the benefit of being dialect specific,
we will analyze tweets that are not mapped to countries, and
study using tweet location in addition to user location to en-
hance mapping accuracy, also enrich the dialectal words list
and assign each dialectal word to a country or a set of coun-
tries.
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Abstract
In simultaneous interpreting, human experts incrementally
construct and extend partial hypotheses about the source
speaker’s message, and start to verbalize a corresponding
message in the target language, based on a partial transla-
tion – which may have to be corrected occasionally. They
commence the target utterance in the hope that they will be
able to finish understanding the source speaker’s message and
determine its translation in time for the unfolding delivery.
Of course, both incremental understanding and translation by
humans can be garden-pathed, although experts are able to
optimize their delivery so as to balance the goals of minimal
latency, translation quality and high speech fluency with few
corrections. We investigate the temporal properties of both
translation input and output to evaluate the tradeoff between
low latency and translation quality. In addition, we estimate
the improvements that can be gained with a tempo-elastic
speech synthesizer.

1. Introduction
Today’s speech-to-speech translation solutions are a long way
from transparent and ubiquitous universal translators as envi-
sioned in science fiction literature (e. g. [1]), for a multitude of
reasons. One of the shortcomings is translation latency, which
in speech can be described as the latency between when a
concept can be grasped from listening to the source utterance
and producing it as part of the target utterance. For swift
and seamless communication across language barriers, low
translation latency is key.

Incremental processing [2] is a technical means to imple-
ment interactive speech processing systems for online speech
recognition [3], [4], [5], language understanding and genera-
tion [6], for speech synthesis [7]. Incremental processing has
also been successfully applied to speech-to-speech translation
(e. g. [8]), where it helps to bring down processing latency in
an integrated system.

An important aspect of incremental processing (and hence,
incremental translation) is the granularity at which material is
being added. A fine granularity of processing is a precondition
to low latency, as smaller units can more quickly be passed on

to a next module. Previous work on incremental translation
has focused on phrasing (based on intonation and somewhat
related to meaning units) for translation [9], as phrases can
easily be passed on to speech synthesis as one unit. Recently,
incremental speech synthesis is progressing well at a word-
by-word granularity, if some additional boundary and finality
information is provided [10], [11].

In building language processing systems, joint analysis
and optimization across module boundaries often greatly im-
proves performance. The combination of speech recognition
with understanding (e. g. [12]) or translation (e. g. [13]) is
quite common, but this is less often done for the output side.
(One notable exception is joint optimization of natural lan-
guage generation and TTS [14], however not in an incremental
setting.)

In this paper, we analyze the timing properties of source
and target speech in an incremental machine translation set-
ting in order to evaluate the improvements possible when
combining word-by-word incremental machine translation
with speech synthesis, particularly with respect to delivery
latency. We do not yet actually employ fully incremental
synthesis but focus our analysis on the advantages of such a
synthesis technique in this contribution.

The remainder of this paper is structured as follows: in
Section 2, we describe the interplay of incremental translation
and the temporal unfolding of source and target speech based
on an example and describe the basic strategies and evaluation
metrics used in the study. In Section 3, we describe our corpus
and experiment setup and present and discuss results for our
basic strategies in Section 4. In Section 5, we look at advanced
delivery timing that makes use of the flexibility that is made
possible by incremental, just-in-time tempo-elastic speech
synthesis. We summarize and conclude our work in Section 6
and outline future work in Section 7.

2. Timing Aspects of Simultaneous
Interpreting

In a perfect world, a translator in transparent simultaneous
interpreting will be able to come up with a perfect partial trans-
lation as soon as the corresponding source language word has
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SRC: The | captain | waved | me | over | . |
TG1: der/die*
TG2: der Kapitän
TG3: Der Kapitän winkte
TG4: Der Kapitän winkte mich
TG5: Der Kapitän winkte mich über*
TG6: Der Kapitän winkte mich zu sich.

Figure 1: Depiction of successive incremental translation
results (TGn) as words of the source utterance (SRC) are
being processed. Wrongly translated words are marked by
an asterisk(*). The challenge: given a (tokenized) input ut-
terance, output should ideally commence immediately when
correct translation results become available (but not before).
Both source and target delivery durations must be taken into
account.

been spoken by the source speaker.1 Even in this case, the
speech output component for incremental translation should
consider when to start speaking rather than starting to speak
immediately, as words in the target language may have a dif-
ferent duration than words in the source language; thus, the
system could run out of words to speak, which would result in
unnatural intermittent pauses during the utterance. Consider
the example in Figure 1: here, even if the initial article is
correctly translated to German “der”, speech delivery should
not commence immediately to avoid unnatural pauses if the
next source language word might take longer to be uttered by
the source speaker.2 In Figure 1, translation output is purpose-
fully aligned to show when respective words should ideally be
delivered by synthesis in order to result in continuous speech
output with minimal latency.

In an imperfect world, incremental translation will some-
times produce output that must later be revised (these words
are marked with an asterisk in the figure; as luck has it, Google
MT translates “the” to German “die”, the female and plural
form of the definite article, which turns out to be wrong in
the example). Of course, a simultaneous translator should
avoid speaking translations that later turn out to be wrong.
Instead, it should speak with a high-enough latency to avoid
short-range mistakes such as the ones shown in the figure.

Notice however, that the necessary delay to accommo-
date differences in delivery speed and intermittent translation
errors can only be determined post-hoc, after the full utter-
ance has been consumed. This of course defeats the goal of
concurrent target language delivery.

We will present an analysis of the necessary delays per
utterance under various translation conditions in Section 4.
However, we believe that long-enough latency to account for
all possible changes in translation cannot be the sole solution.

1Of course, our processing could also be concerned with sub-word units.
However, that case would be conceptually similar to word-by-word process-
ing (but potentially giving better results at the cost of higher complexity);
this direction will not be considered further in the present work.

2This problem can be somewhat reduced by hesitation and/or lengthening
capabilities: “de..r Kapitän . . . ”).

Table 1: Some key statistics of the corpus (timings as de-
termined by TTS; English reference data as well as token
durations for de/es translations).

count duration in seconds
total mean stddev median

utterances 1436 5.14 3.36 4.31
phrases (as determined by TTS) 3099 2.39 1.64 1.95
tokens 26890 .276 .172 .205
de token # and durations (in s) 27800 .328 .203 .25
es token # and durations (in s) 27275 .307 .195 .233

In order to account for long-range garden-pathing in trans-
lation (in which case translation should actively change its
mind, just like a human in this situation), simply increasing
delays is not the answer.

For this reason, we propose that automatic simultaneous
interpreting modules, just like human experts, must have re-
covery capabilities, which enable them to cope with situations
in which already-delivered parts of a translation should be re-
voked and replaced by a different translation. Human experts
use and combine various strategies to cope with the problem
[15]. We experiment here with the simplest possible solution
of dealing with changes: we ignore all changes to words that
have already or are currently being spoken. This causes the
translation performance to deteriorate, given a fixed delay
(similarly to [16]), which will also be analyzed in Section 4.

Finally, one intuitively important strategy of human ex-
perts is to vary the latency between input and output by vary-
ing speech delivery tempo. We report on our initial progress
in determining overall latency and reducing it in Section 5.

3. Corpus and Experiment Setup
We use the IWSLT 2011 test set of the TED talks corpus as
provided by the Web Inventory of Transcribed and Translated
Talks [17]. As translation quality and stability may depend
to a large extent on languages, we include analyses for three
language pairs: en → de, en → es, and de → en.3

We tokenize the respective source material with WASTE
[18], using the included models for German and English. We
then feed each of the utterances to standard, per-se non-incre-
mental translation systems in a restart-incremental fashion:
first translating just the first token, then the first two, then
the first three, and so on, ending with the full utterance. This
results in a large processing overhead and may confuse the
translation system which may consider each input as a full
utterance (while we are mostly sending partial utterances)
– however it is a simple and reliable way of making non-
incremental processors incremental. We decided to include
all non-word tokens, as they give important clues to translation
systems that are not trained on spoken data and are necessary
to provide comparable BLEU score results on the TED data.

3Notice that we use the provided datasets ‘in reverse’ for de → en
translation, ignoring the fact that that the original source becomes the target
language in this experiment.
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Figure 2: Histograms of per-sentence output delays (in s) that are necessary to accommodate all translation hypothesis changes.

As translation systems, we use both the Google MT web
interface4, and for Spanish, we also also use an AT&T propri-
etary SMT system [19].

Finally, we add word-level timing information to the
source language and translation output using text-to-speech
timing predictions5 provided by MaryTTS [20] including re-
cent additions for Spanish speech synthesis.6 As our setup
does not generate timings for some final punctuation, we use a
flat duration estimate of 200 ms per punctuation in these cases.
These 200 ms can be seen as the latency for end-of-utterance
detection if our system were to be combined with incremental
speech recognition in the future. Some key statistics about
the corpus are compiled in Table 1.

As it turns out, overall German and Spanish speech du-
ration are 23 % and 13 % higher respectively than overall
English speech duration. A similar difference remains when
using gold-standard German transcriptions instead of the MT
output. Whether, however, this difference is due to a faster
speech rate of the English voice, or due to expressive differ-
ences in the language, remains open. In any case, we have not
controlled for this difference in the following experiments.

4. Evaluation of Basic Measures
For a time-aligned source sentence and its corresponding
time-aligned incremental translation output that represents
the final target language sentence, we find the minimum nec-
essary delay at which the target sentence can be delivered
such that the partial translation hypotheses always match the
final target language sentence (i. e., the synthesis would never
be triggered to start saying a word that is later replaced by a
different word during incremental translation).

Using the incremental evaluation toolbox intelida [21], we
compute the delay that is necessary in order to have all finally
chosen target language words available before their scheduled

4http://translate.google.com/ with the help of some PHP-
based automation code.

5Of course, we could have extracted more precise source language timing
information from TED videos, but results would likely be similar and only
be available for English as source language.

6We thank Marcela Charfuelan for making a Spanish voice and linguistic
resources available.

delivery starts, and without intermittent interruptions from
synthesis running out of words to speak. Delay histograms for
all translation directions and systems are shown in Figure 2,
and also indicate mean (vertical lines) as well as boxplots
for median, 25/75 % (box) and 5/95 % (whiskers) quantiles.
Notice that these delays are optimistic, i. e. they do not take
into account translation time.

As can be seen in the histograms, the necessary delays are
quite short on average, and, in particular, necessary delays for
the majority of sentences are shorter than the average phrase
length (cmp. Table 1), indicating that a word-level granularity
(instead of phrase-level granularity as used in [9]) may be
advantageous for simultaneous interpreting.

Also, we see that the histograms for the Google MT sys-
tem have a very long tail with some necessary delays of
over 10 seconds. On closer observation, we noticed that the
Google MT system often (but not only) changes opinion when
the final punctuation is added. We examined some of these
sentence-final changes in detail and saw no clear tendency
that they actually lead to an overall improvement of the result-
ing translation. In contrast, our own system, which is more
strongly restricted in the sub-phrase reordering stage, results
in a more normal distribution of necessary delays. This makes
our own system more suitable for simultaneous interpreting,
although the systems’ translations and resulting BLEU scores
differ, as shown below. Whether delay histograms would look
more similar at equal BLEU performance levels must be left
to speculation.

Finally, we notice much longer delays for de → en than
for en → de translations. There may be several reasons for
this: Firstly, German sentences often contain the verb late in
the sentence, whereas English more stringently follows the
SVO principle. As a consequence, the verb cannot be correctly
translated until late in the sentence and, when it finally occurs,
it may result in a change of the material that came before.
Secondly, we mentioned above that our TTS generates slower
speech for German (and Spanish) than for English. This
phenomenon may skew the histograms in opposite directions
when translating in opposite directions and may also be the
cause for the longer necessary delays when translating from
German. However, the histogram does not tail off as quickly
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Figure 3: Performance penalty for given initial delays under
all translation conditions.

as it does with English as source language, which could not
be explained by differing TTS tempos.

Of course, latency is just one aspect of simultaneous in-
terpreting, the other major factor being translation quality.
Beyond the non-incremental translation quality of the transla-
tion systems and corpora used, we have also implemented a
very simple method for generating incremental translations
under time-pressure (i.e., in simultaneous interpreting), where
some words that are later overridden by a more informed
translation, are already being spoken. In this case, our system
simply ignores the change and re-aligns the new translation
hypothesis using the Levenshtein algorithm [22].

Figure 3 shows translation performance (in terms of
BLEU scores) of the different translation conditions for non-
incremental (horizontal dashed lines) translation, which forms
a natural upper bound for translations that are restricted in
changing their hypotheses to different latency settings.

As can be seen in the figure, overall translation perfor-
mance differs between translation systems, language pairs,
and direction. Specifically, Google’s en → de translations
lags behind and differs substantially from the reverse trans-
lation direction, or en → es. Our own en → es system
performs poorly as compared to Google’s. Our system was
trained on different domain material, which may limit its per-
formance on TED data; we plan to re-train our models in time
for the final version of this paper.

Aside from translation quality, the performance penalty
from limited-delay processing also differs substantially: our
own system approaches its non-incremental performance
rather quickly, while Google’s systems require longer delays
to reach their performance ceiling – although it must be noted
that Google outperforms our system even with short delays.

Quite importantly, we note that de → en translation suf-
fers most from long delays, to an extent that incremental
performance is lower than en → es, even though the non-
incremental performance is higher, de → en only approaches
non-incremental performance with a startup delay of around
4.8 seconds. We believe this property to stem from linguis-
tic properties of German, which are not well-handled by our
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Figure 4: Resulting final latencies for given initial delays.

overly simplistic incrementalization approach.

5. Considering Speech Delivery Tempo
Words in the target language can only begin to be realized
when the corresponding source language word has been com-
pletely delivered and translated. As words have different
inherent durations, an incremental system may intermittently
run out of material to speak, waiting for the next source lan-
guage word to be completed and translated. As a consequence,
the actual delay of the system as implemented is often higher
than the initial startup delay, when the system has to wait
for more translated material to become available. In addi-
tion, the speaking duration of the remaining words in the
target language once the source utterance and translation have
completed, must also be considered.

Figure 4 shows the actual resulting latency of target utter-
ance completion after source utterance completion, at various
initial delay settings. As can be seen in the figure, the re-
sulting latency is substantially higher than the initial delay.
There are two reasons for this: (a) target utterance delivery
still needs to finish after the source utterance has already been
completed; and (b) the delay may have to be increased in-
termittently, when source language delivery is too slow to
sustain translation and delivery in the target language. In our
experiments, we observe both phenomena, even though (a) is
prevalent.

In all cases, latency is more than a second higher than
the startup delay, which forms a natural lower bound for
latency. We also notice that latencies increase more than
initial delays for all but the de → en condition. This may be
due to synthesis delivery speeds differing across languages.
While de → en is impaired most by low delays (see Figure 3),
it also accommodates longer delays in terms of the resulting
latencies.

As mentioned previously, one goal of incremental speech
synthesis is to have immediate control over delivery, and
specifically, delivery timing. In Figure 4, we also plotted as
dotted lines the resulting latencies if speech synthesis is sped
up by 10 % starting at the word delivered after the source
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language utterance has been completed. We notice a slight
latency reduction across languages, of 4-5 % on average, or
100-200 ms, which may already be noticeable in applications.

We believe that somewhat higher speed-ups may be
tolerable for listeners, which will lead to correspondingly
larger improvements, and we plan to confirm this in listen-
ing/understanding experiments.

The second source of latency is delays that are increased
during the utterance as the system runs out of target material.
These additional delays can be substantial, especially for short
startup delays. For example in the en → de condition, the
additional average delay amounts to about 288 ms (179 ms)
for a startup delay of 500 ms (respectively 700 ms).

We plan to reduce overall latency by bringing down
utterance-internal delays through increasing speech tempo
after the system has to intermittently pause. More generally
speaking, we hope to estimate incremental translation stabil-
ity (similarly to speech recognition stability [5]) and infer a
flexible delay that accommodates more change at times when
translation is particularly uncertain. The flexible delays will
be integrated by varying delivery tempo in the incremental
speech synthesis.

6. Conclusions
We have presented an analysis of incremental speech transla-
tion that takes into account speech delivery timings for both
input and output. We find that, on average, conventional
translation systems that are employed in a restart-incremental
fashion produce their results with relatively low latencies. In
particular, average delays are shorter than the average phrase,
confirming our belief that word-by-word incrementality leads
to better quality/latency trade-offs than phrase-by-phrase in-
cremental systems.

In our experiments, we find that language pairs behave
differently, and that German-to-English translation may be
particularly difficult to perform incrementally. In addition,
we find that our own system, which is quite limited in the
word-reordering stage of translation, does not require as long
delays and approaches its performance ceiling more quickly
with limited delays – however, at the cost of overall lower
performance. We plan to re-train our models with in-domain
data in order to better compare our system with Google’s MT.

In addition, we find that overall latency results from both
the source utterance timing and its translation, and the target
utterance delivery. While we have implemented a simple
solution for the latter issue, we are still exploring how to deal
with the former.

Finally, BLEU scores may be insufficient to judge in-
cremental performance. An incremental translation system
should strategically consider the duration of target language
words in order to “gain time” or to speed up delivery, as re-
quired over the course of an utterance, while remaining easily
understandable. Such word choices may hurt BLEU, as the
“wrong” translation can be chosen, but improve actual system
behaviour.

7. Future Work
As next steps, we will examine stability models for transla-
tions, similar to [5] for speech recognition. Our initial experi-
ments in this direction are promising; however, they require
translation internals which are not available from Google’s
MT. On the other hand, our own translation system is not
trained on in-domain data, and hence delivers poor perfor-
mance.

As we do not believe that a simultaneous interpreting sys-
tem can lag behind to a degree that it “covers” all intermittent
mis-translations, such a system will require an explicit recov-
ery module that is able to rephrase and correct (perhaps using
prosodic marking) already delivered material in a way that
is easy to digest for the user. As such rephrasing cannot be
learned from translation data, we believe this process cannot
be left to the translation module alone.

Finally, we plan to validate the trade-off between transla-
tion quality and latency reduction of our system in a user study.
In order to focus the study on the incremental aspects of the
system, we plan to have participants fill in a multiple-choice
survey about facts conveyed in the translation material. The
timing of answers and their correctness will be informative
regarding the two major aspects of incremental processing,
latency and correctness. In addition, user changes to their
answers should be useful in conveying information about the
stability of the message conveyed.

8. Acknowledgements
The authors would like to thank Marcela Charfuelan for mak-
ing available her MaryTTS extensions for Spanish speech
synthesis, as well as the valuable feedback by the anonymous
reviewers. This work is supported by a Daimler and Benz
Foundation PostDoc Grant to the first author.

9. Bibliography
[1] D. Adams, The Hitchhiker’s Guide to the Galaxy, ser.

The Hitchhiker’s Guide to the Galaxy. Pan Books, Oct.
1979.

[2] D. Schlangen and G. Skantze, “A General, Abstract
Model of Incremental Dialogue Processing,” in Pro-
ceedings of the EACL, Athens, Greece, 2009, pp. 710–
718.

[3] T. Baumann, M. Atterer, and D. Schlangen, “Assessing
and improving the performance of speech recognition
for incremental systems,” in Proceedings of NAACL-
HLT 2009, Boulder, USA, 2009, pp. 380–388.

[4] E. Selfridge, I. Arizmendi, P. Heeman, and J. Williams,
“Stability and accuracy in incremental speech recogni-
tion,” in Proceedings of the SIGDIAL 2011 Conference,
Portland, Oregon: Association for Computational Lin-
guistics, Jun. 2011, pp. 110–119. [Online]. Available:
http://www.aclweb.org/anthology/W/
W11/W11-2014.

167

Proceedings of the 11th International Workshop on Spoken Language Translation
Lake Tahoe, December 4th and 5th, 2014



[5] I. McGraw and A. Gruenstein, “Estimating word-
stability during incremental speech recognition,” in
Proceedings of Interspeech, ISCA, Portland, USA, Sep.
2012.

[6] G. Skantze and A. Hjalmarsson, “Towards incremental
speech generation in dialogue systems,” in Proceedings
of SIGdial, Tokyo, Japan, Sep. 2010.

[7] T. Baumann and D. Schlangen, “INPRO_ISS: a com-
ponent for just-in-time incremental speech synthesis,”
in Procs. of ACL System Demonstrations, Jeju, Korea,
2012.

[8] S. Bangalore, V. K. Rangarajan Sridhar, P. Kolan,
L. Golipour, and A. Jimenez, “Real-time incremen-
tal speech-to-speech translation of dialogs,” in Pro-
ceedings of NAACL-HTL 2012, Montréal, Canada, Jun.
2012, pp. 437–445.

[9] V. K. R. Sridhar, J. Chen, S. Bangalore, and A. Conkie,
“Role of pausing in text-to-speech synthesis for simul-
taneous interpretation,” in Proceedings of SSW8, 2013.

[10] T. Baumann, “Decision tree usage for incremental para-
metric speech synthesis,” in Proceedings of the Inter-
national Conference on Audio, Speech, and Signal Pro-
cessing (ICASSP 2014), Florence, Italy, May 2014.

[11] ——, “Partial representations improve the prosody of
incremental speech synthesis,” in Proceedings of Inter-
speech, 2014.

[12] A. Deoras, R. Sarikaya, G. Tur, and D. Hakkani-Tur,
“Joint decoding for speech recognition and seman-
tic tagging,” Annual Conference of the International
Speech Communication Association (Interspeech),
2012. [Online]. Available: http : / / research .
microsoft . com / apps / pubs / default .
aspx?id=183552.

[13] H. Ney, “Speech translation: coupling of recognition
and translation,” in Acoustics, Speech, and Signal Pro-
cessing, 1999. Proceedings., 1999 IEEE International
Conference on, IEEE, vol. 1, 1999, pp. 517–520.

[14] C. Nakatsu and M. White, “Learning to say it well:
reranking realizations by predicted synthesis quality,”
in Proceedings of the 21st International Conference
on Computational Linguistics and 44th Annual Meet-
ing of the Association for Computational Linguistics,
Sydney, Australia: Association for Computational Lin-
guistics, 2006, pp. 1113–1120. DOI: 10 . 3115 /
1220175.1220315. [Online]. Available: http:
//www.aclweb.org/anthology/P06-1140.

[15] V. K. R. Sridhar, J. Chen, and S. Bangalore, “Corpus
analysis of simultaneous interpretation data for improv-
ing real time speech translation.,” in INTERSPEECH,
2013, pp. 3468–3472.

[16] H. Shimizu, G. Neubig, S. Sakti, T. Toda, and S. Naka-
mur, “Constructing a speech translation system using
simultaneous interpretation data,” in Proceedings of
the 10th International Workshop on Spoken Language
Translation (IWSLT 2013), Heidelberg, Germany, 2013,
pp. 212–218.

[17] M. Cettolo, C. Girardi, and M. Federico, “Wit3: web
inventory of transcribed and translated talks,” in Pro-
ceedings of the 16th Conference of the European Asso-
ciation for Machine Translation (EAMT), Trento, Italy,
2012, pp. 261–268.

[18] B. Jurish and K.-M. Würzner, “Word and sentence
tokenization with hidden markov models,” JLCL, vol.
28, no. 2, pp. 61–83, 2013.

[19] V. kumar Rangarajan sridhar, S. Bangalore, A. Jimenez,
L. Golipour, and P. Kolan, “SPECTRA: a speech-to-
speech translation system in the cloud,” IEEE Inter-
national Conference on Emerging Signal Processing
Applications, Tech. Rep., 2012.

[20] M. Schröder and J. Trouvain, “The German text-
to-speech synthesis system MARY: a tool for re-
search, development and teaching,” International Jour-
nal of Speech Technology, vol. 6, no. 3, pp. 365–377,
Oct. 2003, ISSN: 1572-8110. DOI: 10 . 1023 / A :
1025708916924.

[21] T. von der Malsburg, T. Baumann, and D. Schlangen,
“TELIDA: A Package for Manipulation and Visuali-
sation of Timed Linguistic Data,” in Proceedings of
SigDial 2009, London, UK, 2009.

[22] V. I. Levenshtein, “Binary codes capable of correcting
deletions, insertions, and reversals,” Soviet Physics –
Doklady, vol. 10, no. 8, pp. 707–710, Feb. 1966.

168

Proceedings of the 11th International Workshop on Spoken Language Translation
Lake Tahoe, December 4th and 5th, 2014



WORD CONFIDENCE ESTIMATION FOR SPEECH TRANSLATION

L. Besacier, B. Lecouteux, N.Q. Luong, K. Hour and M. Hadjsalah

LIG, University of Grenoble, France
laurent.besacier@imag.fr

Abstract
Word Confidence Estimation (WCE) for machine transla-
tion (MT) or automatic speech recognition (ASR) consists in
judging each word in the (MT or ASR) hypothesis as correct
or incorrect by tagging it with an appropriate label. In the
past, this task has been treated separately in ASR or MT con-
texts and we propose here a joint estimation of word confi-
dence for a spoken language translation (SLT) task involving
both ASR and MT. This research work is possible because
we built a specific corpus which is first presented. This cor-
pus contains 2643 speech utterances for which a quintuplet
containing: ASR output (src-asr), verbatim transcript (src-
ref), text translation output (tgt-mt), speech translation out-
put (tgt-slt) and post-edition of translation (tgt-pe), is made
available. The rest of the paper illustrates how such a corpus
(made available to the research community) can be used for
evaluating word confidence estimators in ASR, MT or SLT
scenarios. WCE for SLT could help rescoring SLT output
graphs, improving translators productivity (for translation of
lectures or movie subtitling) or it could be useful in interac-
tive speech-to-speech translation scenarios.

Word confidence estimation (WCE), Spoken Language
Translation (SLT), Corpus, Joint features.

1. Introduction
Confidence estimation is a rather hot topic both for Auto-
matic Speech Recognition (ASR) and for Machine Transla-
tion (MT). While ASR and MT systems produce more and
more user-acceptable outputs, we still face open questions
such as: are these translations/transcripts ready to be pub-
lished as they are? Are they worth to be corrected or do they
require retranslation/retranscription from scratch? It is un-
doubtedly that building a method which is capable of point-
ing out the correct parts as well as detecting the errors in
each MT or ASR hypothesis is crucial to tackle these above
issues. Also, confidence estimation can help to re-rank N-
best hypotheses [1] or re-decode the search graph [2]. If we
limit the concept “parts” to “words”, the problem is called
Word-level Confidence Estimation (WCE).

The WCE’s objective is to assign each word in the MT
or ASR hypothesis a confidence score (typically between 0
and 1). For error detection, this score can be binarized and
then each word is tagged as correct or incorrect. In that case,
a classifier which has been trained beforehand from a feature

set calculates the confidence score for the output word, and
then compares it with a pre-defined threshold. All words with
scores that exceed this threshold are categorized in the Good
label set; the rest belongs to the Bad label set. In the past, this
task has been treated separately in ASR or MT contexts and
we propose here a joint estimation of word confidence for a
spoken language translation (SLT) task involving both ASR
and MT. We believe that WCE for SLT could help improving
translators productivity (for lecture or movie translation) or
it could be useful in interactive speech-to-speech translation.

The remaining of this paper is the following. In section
2 we present our first contribution: a corpus (distributed to
the research community) dedicated to WCE for SLT. To our
knowledge, this is the first corpus that allows experimenting
such a task. It contains 2643 speech utterances for which a
quintuplet (containing ASR output, verbatim transcript, text
translation output, speech translation output and post-edition
of translation) is available. Then sections 3 and 4 present
our WCE systems (as well as a quick description of related
works) for ASR and MT respectively. Section 5 illustrates
how our corpus can be used for evaluating word confidence
estimators in a SLT scenario. Finally we conclude this paper
and give some perspectives.

2. A database for WCE evaluation in spoken
language translation

2.1. Starting point: an existing MT Post-edition corpus
For a French-English translation task, we used our SMT sys-
tem to obtain the translation hypothesis for 10,881 source
sentences taken from news corpora of the WMT (Workshop
on Machine Translation) evaluation campaign (from 2006 to
2010). Post-editions were obtained from non professional
translators using a crowdsourcing platform. More details on
the baseline SMT system used can be found in [4] and more
details on the post-edited corpus can be found in [5]. It is
worth mentionning, however, that a subset (311 sentences) of
these collected post-editions was assessed by a professional
translator and 87.1% of post-editions were judged to improve
the hypothesis

Then, the word label setting for WCE was done using
TERp-A toolkit [3]. Table 1 illustrates the labels generated
by TERp-A for one hypothesis and post-edition pair. Each
word or phrase in the hypothesis is aligned to a word or
phrase in the post-edition with different types of edit: I (in-
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Reference The consequence of the fundamentalist movement also has its importance .
S S Y I D P

Hyp After Shift The result of the hard-line trend is also important .

Table 1: Example of WCE label setting using TERp-A [3]

sertions), S (substitutions), T (stem matches), Y (synonym
matches), and P (phrasal substitutions). The lack of a sym-
bol indicates an exact match and will be replaced by E there-
after. We do not consider the words marked with D (dele-
tions) since they appear only in the reference. However, later
on, we will have to train binary classifiers (good/bad) so we
re-categorize the obtained 6-label set into binary set: The E,
T and Y belong to the Good (G), whereas the S, P and I be-
long to the Bad (B) category. Finally, we observed in our
corpus that out of total words (train and test sets) are 85%
labeled G, 15% labeled B.

From this corpus, we extract 10,000 triplets (source ref-
erence src-ref, machine translation output tgt-mt and post-
edition of translation tgt-pe) for training our WCE (for MT)
system and keep the remaining 881 triplets as a test set.

2.2. Augmenting the corpus with speech recordings and
transcripts
In order to take advantage of the existing PE corpus, we de-
cided to record the utterances of its test part to augment the
corpus with speech inputs. We admit that this would have
been better to capture real speech data, then transcribe it,
translate and post-edit but we believe that our corpus will
remain useful to study WCE for SLT, even if translating read
speech is not the best practical SLT task we could imagine.

So, the test set of this corpus was recorded by French
native speakers. Each of the 881 sentences was uttered by
3 speakers, leading to 2643 speech recordings. 15 speakers
(9 women and 6 men) took part to the speech data collection
in normal office condition. The total length of the speech
corpus obtained is more than 5h since some utterances were
pretty long.

Then, our French ASR system based on KALDI toolkit
[6] was used to obtain the speech transcripts. The 3-gram
language model was trained on the French ESTER corpus as
well as French Gigaword (vocabulary size is 55k). SGMM-
based acoustic models were trained using the same ESTER
corpus - see details in [7].

It is important to note that automatic post-processing was
needed at the output of the ASR system in order to match
requirements of standard input for machine translation (we
wanted our ASR outputs to match, as much as possible,
our already available src-ref utterances). Thus, the follow-
ing post-treatments were applied: number conversion (back
to digit numbers), recasing (our SMT system is a true case
one), re-punctuating, converting full words back to abbrevi-
ations (kilometre becomes km, madame becomes Mme, etc.)
and restoring special characters (pourcents becomes %, euro
becomes e). With this post-processing, the output of our
ASR system, scored against the src-ref reference went from

29.05% WER to 26.6% WER.
This WER may appear as rather high according to the

task (transcribing read news) but these news contain a lot
of foreign named entities (part of the data is extracted from
French newspapers dealing with european economy in many
EU countries).

2.3. Obtaining labels in order to evaluate WCE for SLT

We now have a new element of our desired quintuplet: the
ASR output src-asr. It is the noisy version of our already
available verbatim transcripts called src-ref. This ASR out-
put (src-asr) was then translated by the exact same SMT sys-
tem [4] already mentionned in paragraph 2.1. This new out-
put translation is called tgt-slt and it is a degraded version of
tgt-mt.

At this point, a strong assumption we made has to be re-
vealed: we re-used the post-editions obtained from the text
translation task (called tgt-pe), to infer the quality (G,B) la-
bels of our speech translation output tgt-slt. The word label
setting for WCE is also done using TERp-A toolkit [3] be-
tween tgt-slt and tgt-pe. This assumption (as well as the fact
that initial MT post-edition can be also used to infer labels of
a SLT task) is reasonable regarding results (later presented
in Table 4) where it is shown that there is not a huge differ-
ence between the MT and SLT performance (evaluated with
BLEU). This means that if the real SLT output had been post-
edited, we would have obtained very similar PE to the actual
ones.

The remark above is important and this is what makes the
value of this corpus. For instance, other corpora such as the
TED corpus compiled by LIUM1 contains also a quintuplet
with ASR output, verbatim transcript, MT output, SLT out-
put and target translation. But there are two main differences:
first, the target translation is a manual translation of the prior
subtitles so this is not a post-edition of an automatic transla-
tion (and we have no guarantee that the G/B labels extracted
from this will be reliable for WCE training and testing). Sec-
ondly, in our corpus, each sentence is uttered by 3 different
speakers in order to introduce a minimum of speaker variabil-
ity in the test set (the consequence is that we have different
ASR outputs for a single source sentence).

2.4. Final corpus statistics and web link for download

The main statistics regarding this corpus are in Table 2,
where we also clarify how the WCE labels were obtained.
For the test set, we now have all the data needed to evaluate
WCE for 3 tasks :

1http://www-lium.univ-lemans.fr/fr/content/corpus-ted-lium
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• ASR: extract G/B labels by computing WER between
src-asr and src-ref,

• MT: extract G/B labels by computing TERp-A be-
tween tgt-mt and tgt-pe,

• SLT: extract G/B labels by computing TERp-A be-
tween tgt-slt and tgt-pe.

Data # train utt # test utt method to obtain WCE la-
bels

src-ref 10000 881
src-sig 5h speech
src-asr 881*3 wer(src-asr,src-ref )
tgt-mt 10000 881 terpa(tgt-mt,tgt-pe)
tgt-slt 881*3 terpa(tgt-slt,tgt-pe)
tgt-pe 10000 881

Table 2: Overview of our post-edition corpus for SLT

Table 3 gives an example of quintuplet available in our
corpus. One transcript (src-hyp1) has 1 error while the other
one (src-hyp2) has 4. This leads to respectively 2 B labels
(tgt-slt1) and 4 B labels (tgt-slt2) in the speech translation
output, while tgt-mt has only one B label. Table 4 summa-
rizes the MT (translation from verbatim transcripts) and SLT
(translation from automatic speech transcripts) performances
obtained on our corpus, as well as the distribution of good
(G) and bad (B) labels inferred for both tasks. Logically, the
percentage of (B) labels increases from MT to SLT task in
the same conditions.

src-ref quand notre cerveau chauffe
src-hyp1 comme notre cerveau chauffe
labels ASR B G G G
src-hyp2 qu’ entre serbes au chauffe
labels ASR B B B B G
tgt-mt when our brains chauffe
labels MT G G G B
tgt-slt1 as our brains chauffe
labels SLT B G G B
tgt-slt2 between serbs in chauffe
labels SLT B B B B
tgt-pe when our brain heats up

Table 3: Exemple of quintuplet with associated labels

task ASR (WER) MT (BLEU) % G (good) % B (bad)
tgt-mt 0% 36.1% 82.5% 17.5%
tgt-slt 26.6% 30.6% 65.5% 34.5%

Table 4: MT and SLT performances on our test set

This corpus is available for download on
github.com/besacier/WCE-SLT-LIG.

3. WCE for speech transcription
3.1. Related work

Several previous works tried to propose effective confidence
measures in order to detect errors on ASR outputs. Out-Of-
Vocabulary (OOV) detection was introduced by [8] and ex-
tended by [9] and [10]. [9] introduced the use of word pos-
terior probability (WPP) as a confidence measure for speech

recognition. Posterior probability of a word (or a sequence)
is most of the time computed using the hypothesis word
graph [9] [11].

Recent approaches [12, 10] for confidence measure esti-
mation use side-information extracted from the recognizer:
normalized likelihoods (WPP), the number of competitors at
the end of a word (hypothesis density), decoding process be-
havior, linguistics features, acoustic features (acoustic stabil-
ity, duration features) and semantic features. Finally, these
papers show the prominence of linguistic features.

Later, WPP score was combined with other high-level
knowledge sources to improve the confidence estimation.
For instance, [10] proposed an efficient method that com-
bines various features (acoustic, linguistic, decoding and se-
mantic features). Another work by [13] combines scores ex-
tracted from several sources: N -best features, acoustic sta-
bility, hypothesis density, duration features, language model,
parsing features, WPP, etc.

3.2. WCE system used and baseline performance

In this work, we extract several types of features, which come
from the ASR graph, from language model scores and from
a morphosyntactic analysis. These features are listed below:

• Acoustic features : words errors probably induce
acoustic distortions between the hypothesis and the
best phonetic sequence. Many observations points out
that word length can predict correct words and errors:
we add a feature which consists of the word duration
(F-dur).

• Graph features : they are extracted from the word con-
fusion networks. When an error occurs, the search al-
gorithm explores various alternative paths: the poste-
rior probabilities and alternative paths can help to pre-
dict errors. We use the number of alternative (F-alt)
paths in the word section, and the posterior probability
(F-post).

• Linguistic features : they are based on probabilities
provided by the language model (3-gram LM) used in
the KALDI ASR system. We use the word itself (F-
word) and the 3-gram probability (F-3g) . We also add
the feature (F-back), proposed in [12] which represents
the back-off level of the targeted word.

• Lexical Features: word’s Part-Of-Speech (F-POS) are
computed using tree-tagger for French.

We use a variant of boosting classification algorithm in
order to combine features. The used implementation is Bon-
zaiboost2 [14]. It implements the boosting algorithm Ad-
aboost.MH over deeper trees.

For each word, we estimate the 7 features (F-Word; F-3g;
F-back; F-alt; F-post; F-dur; F-post) previously described.
The classifier is trained on BREF 120 corpus [15]. After

2http://bonzaiboost.gforge.inria.fr
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decoding, we obtain about 1M word examples. Each word
from this corpus is tagged as correct or not correct, according
to the reference.

Once we have the prediction model built with all features,
we apply it on the test set (3*881 sentences) and obtained the
required WCE labels along with confidence probabilities. In
term of F-score, our WCE system reaches the following per-
formance: predicting “G” label: (87.85%), and predicting
“B” label: (37.28%).

4. WCE for machine translation
4.1. Related work

The Workshop on Machine Translation (WMT) introduced
in 2013 a WCE task for machine translation. [16, 17] em-
ployed the Conditional Random Fields (CRF) [18] model as
their Machine Learning method to address the problem as a
sequence labeling task. Meanwhile, [19] extended the global
learning model by dynamic training with adaptive weight up-
dates in the perceptron training algorithm. As far as predic-
tion indicators are concerned, [19] proposed seven word fea-
ture types and found among them the “common cover links”
(the links that point from the leaf node containing this word
to other leaf nodes in the same subtree of the syntactic tree)
the most outstanding. [16] focused only on various n-gram
combinations of target words. Inheriting most of previously-
recognized features, [17] integrated a number of new indi-
cators relying on graph topology, pseudo reference, syntac-
tic behavior (constituent label, distance to the semantic tree
root) and polysemy characteristic. Optimization endeavors
were also made to enhance the baseline, including classifi-
cation threshold tuning, feature selection and boosting tech-
nique [17].

4.2. WCE system used and baseline performance

We employ the Conditional Random Fields [18] (CRFs) as
our machine learning method, with WAPITI toolkit [20], to
train the WCE model. A number of knowledge sources are
employed for extracting features, in a total of 25 major fea-
ture types:

• Target Side: target word; bigram (trigram) backward
sequences; number of occurrences

• Source Side: source word(s) aligned to the target word

• Alignment Context [21]: the combinations of the tar-
get (source) word and all aligned source (target) words
in the window ±2

• Word posterior probability [22]

• Pseudo-reference (Google Translate): Does the word
appear in the pseudo reference or not?

• Graph topology [23]: number of alternative paths in
the confusion set, maximum and minimum values of
posterior probability distribution

• Language model (LM) based: length of the longest se-
quence of the current word and its previous ones in the
target (resp. source) LM. For example, with the tar-
get word wi: if the sequence wi−2wi−1wi appears in
the target LM but the sequence wi−3wi−2wi−1wi does
not, the n-gram value for wi will be 3.

• Lexical Features: word’s Part-Of-Speech (POS); se-
quence of POS of all its aligned source words; POS
bigram (trigram) backward sequences; punctuation;
proper name; numerical

• Syntactic Features: null link [24]; constituent label;
depth in the constituent tree

• Semantic Features: number of word senses in Word-
Net.

Interestingly, this feature set was also used in our English
- Spanish WCE System submitted for WMT 2013 Quality
Estimation shared task and obtained the best performance
[23].

Once we have the prediction model, we apply it on the
test set (881 sentences) and obtained the required WCE la-
bels along with confidence probabilities. In term of F-score,
our WCE system reaches very promising performance in pre-
dicting “G” label (87.65%), and acceptable for “B” label
(42.29%).

5. Joint estimation of word confidence for a
speech translation task

Now, if we consider WCE for a speech translation task, there
is no related work available since, to our knowledge, this is
the first time such a task is proposed with a corpus allowing
to evaluate joint WCE features coming from both ASR and
MT.

task WCE for
ASR

WCE for
MT

WCE for
SLT

WCE for
SLT

WCE for
SLT

feat.
type

ASR feat. MT feat. MT feat. ASR feat. 0.5MT+0.5ASR
feat.

F(G) 87.85% 87.65% 77.17% 76.41% 77.54%
F(B) 37.28% 42.29% 39.34% 38.00% 43.96%

Table 5: Summary of word confidence estimation (WCE) re-
sults obtained on our corpus with different feature sets based
on ASR, MT or both. Numbers reported are F scores for
Good (G) and Bad (B) labels respectively with a common
decision threshold.

We first report in Table 5 the baseline results by individ-
ual WCE systems for a single ASR task and for a single MT
task (second and third columns of the table - numbers corre-
spond to the performance of the systems described in the two
previous sections). Then, to illustrate how our corpus can be
used for word confidence estimation in speech translation,
we evaluated the performance of 3 systems (using labels SLT
- see Table 3 - as reference to score the WCE systems):

• The first system (SLT sys. / MT feat.) is the one de-
scribed in section 4 and uses only MT features. No
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modification of the WCE (for MT) system is needed
since the only difference is that the source sentence is
src-hyp (ASR output) instead of src-ref,

• The second system (SLT sys. / ASR feat.) is the one
described in section 3 and uses only ASR features. So
this is predicting SLT output confidence using only
ASR confidence features ! Word alignment informa-
tion between src-hyp and tgt-slt is needed to project
the WCE scores coming from ASR, to the SLT output
(done using adequate Moses option, where the align-
ment information is kept in the decoding output).

• The third system (SLT sys. / MT+ASR feat.) com-
bines the information from the two previous WCE
systems. In this work, the ASR-based confidence
score of the source is projected to the target SLT out-
put and linearly combined with the MT-based confi-
dence score (we tried different weights but only report
0.5MT+0.5ASR as well as 0.9MT+0.1ASR in the re-
sults). It is important to note that WCE systems are not
retrained here since we perform a late fusion of scores
from two different systems. Training a specific WCE
system for SLT based on joint ASR and MT features is
part of future work.

The results of these 3 systems are given in the last 3
columns of Table 5. They are obtained on the whole test
set 3. For the late fusion (MT+ASR), we do an arithmetic
mean of both WCE systems scores 4. From these results,
we see that the use of both ASR-based and MT-based confi-
dence scores improve the F-score for “B” label from 39.34%
(MT only features) and 38% (ASR only features) to 43.96%
(MT+ASR features), while giving similar F-score for “G”
label. It is also interesting to notice that using ASR features
lead to reasonable performance, almost equivalent to the MT
features baseline. This can appear as rather disturbing be-
cause in that case, WCE estimator do not look at the trans-
lation to predict the confidence of the target words ; it only
uses (detected) ASR errors to decide which word is good or
bad in the speech translation output.

Figure 1 reports more detailed experiments where the
G/B decision threshold varies systematically from 0.5 to 0.9
(with a step of 0.025). The different systems use different
linear combination weights.

• Weight=1 corresponds to the use of MT features only,
• Weight=0.9 linearly combines both confidence scores

as follows: 0.9MT+0.1ASR (intuitively, we thought
that MT features would be more important),

• Weight=0.5 linearly combines both confidence scores
as follows: 0.5MT+0.5ASR,

• Weight=0 corresponds to the use of ASR features only,
3They are given to illustrate how our database can be used, with basic

strategies to fuse ASR and MT scores. More advanced fusion together with
a crossvalidation protocol will be presented in future work

4All the results of the table are given using a G/B decision thershold
which is a priori set to 0.7

Figure 1: WCE performance (F(B) vs F(G) of different WCE
methods - for SLT - for different decision thresholds varying
from 0.5 to 0.9).

Figure 2: Evolution of the WCE scores distribution from MT
features to MT+ASR features

From this figure, we see clearly that using both MT and
ASR confidence scores improves the overall WCE perfor-
mance. However, looking at the results obtained separately
by the individual systems, one would have expected a better
improvement with their combination. One explanation for
this is the fact our WCE scores distributions are rather biased
(as seen in Figure 2, many scores equal 1 for both G and
B labels). Even if averaging (or linearly combining) ASR
and MT scores tend to improve the class separability (Figure
2 shows how the WCE scores distributions evolve from MT
to MT+ASR features), a better strategy might be to replace
linear combination by more advanced strategies such as de-
cision trees, SVMs or joint classifier based on the union of
ASR and MT features, etc.

6. Conclusion
We presented a specific corpus to study and evaluate word
confidence estimation of speech translation. It contains 2643
speech utterances with a quintuplet containing ASR output,
verbatim transcript, MT output, SLT output and post-edition
of translations. Researchers interested in making use of
the dataset can download it from github.com/besacier/WCE-
SLT-LIG. We also intend to record speech for the 10000 sen-
tences of the train part described in Table 2. The perspectives
of this work are numerous:
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• propose a new shared task on word confiedence esti-
mation for speech translation,

• train a single WCE system for SLT using joint
ASR+MT features and see if more SLT errors can be
accurately detected,

• rescore speech translation N-best lists or redecode
speech translation graphs using WCE information, as
was done by [2] but for MT only,

• use WCE for data augmentation from un-transcribed
(and/or un-translated) speech in semi-supervised SLT
scenarios,

• adapt WCE system for real interactive speech transla-
tion scenarios such as news or lectures subtitling,

• move from a binary (Good or Bad translation) to a 3-
class decision problem (Good, ASR error, MT error),

• study how WCE can be adapted to a simultaneous in-
terpetation task.
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Abstract
Translating meetings presents a challenge since multi-

speaker speech shows a variety of disfluencies. In this paper
we investigate the importance of transforming speech into
well-written input prior to translating multi-party meetings.
We first analyze the characteristics of this data and estab-
lish oracle scores. Sentence segmentation and punctuation
are performed using a language model, turn information, or a
monolingual translation system. Disfluencies are removed by
a CRF model trained on in-domain and out-of-domain data.
For comparison, we build a combined CRF model for punc-
tuation insertion and disfluency removal. By applying these
models, multi-party meetings are transformed into fluent in-
put for machine translation. We evaluate the models with
regard to translation performance and are able to achieve an
improvement of 2.1 to 4.9 BLEU points depending on the
availability of turn information.

1. Introduction
Machine translation (MT) of spontaneous speech has re-
cently drawn a great deal of interest. For instance, the im-
portance of sentence segmentation, punctuation insertion and
disfluency removal for translating monologue data, such as
lectures, has been researched extensively. In addition, there
have been research efforts investigating MT of two-party
speech, such as telephone calls. However, automatic trans-
lation of multispeaker speech remains yet underexplored.

In our globalized world, teams of different parts of the
world are increasingly working together. Internal team meet-
ings held in one language need to be translated into another
language in order to make the discussions available to all
involved parties. Human translation is time-consuming and
costly, so MT can be a supportive tool to overcome this chal-
lenge. State-of-the-art MT systems, however, are not de-
signed for such conversational speech, especially when mul-
tiple speakers are involved. Since conventional MT systems
are built using written texts, their performance drops when
they are applied to such a different domain. We therefore
propose an approach to transform multi-party meetings so
they are closer in style to the training data of the MT system.

Natural language processing (NLP) of multispeaker
speech presents unique research challenges. Speech disflu-
encies should be removed, while the punctuation marks and
sentence boundaries need to be inserted.

Spontaneous speech contains a large number of disfluen-
cies, such as hesitations as well as repetitions, either exactly
or vaguely the same, and speech fragments. In addition to
these disfluencies, speakers may interrupt each other. Due to
such interruptions, aborted speech fragments occur very of-
ten in multispeaker speech. Therefore, it is one of our main
goals to model such disfluencies which can better fit the do-
main. One of the difficulties of disfluency detection, how-
ever, is data sparsity, since speech disfluencies are usually
modelled using disfluency-annotated data. Thus it is neces-
sary to explore how to improve the performance given the
limited quantity of data as well as evaluate how important
the domain is for the given task.

Since the output of an automatic speech recognition
(ASR) system is a stream of word tokens, without punctu-
ation or segmentation information, it is necessary to properly
segment and punctuate the ASR output for translation.

In this work, we present various approaches to reformu-
late multispeaker speech prior to MT, through segmentation,
punctuation insertion and disfluency removal. In order to ex-
plore the importance of domain in this task, we train disflu-
ency removal models on in-domain and out-of-domain data
and compare the results. Every experiment is conducted in
two conditions whether turn information is available or not.
Once the disfluencies of the meeting data are removed and
punctuation marks are inserted, the data goes through our
English to French MT system. For comparison, oracle ex-
periments results and a baseline system are shown.

2. Related Work

There has been extensive effort on disfluency removal on
telephone speech, or Switchboard data [1]. In [2], Johnson et
al. combined the noisy channel approach with a tree adjoin-
ing grammar for modeling speech disfluencies. In the noisy
channel model, it is assumed that fluent text goes through
a channel which adds disfluencies. Disfluency removal on
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the same data is modeled using a conditional random fields
(CRF) model in [3], using language and lexical model, and
parser information as features.

In [4], segmentation and disfluency removal issue in
meeting data is handled in the scope of ASR. Baron et
al. explored sentence boundary and disfluency detection in
meetings using prosodic and lexical cues. For multi-party
meeting data they used data collected as part of the ICSI
Meeting Recording Project [5]. Sentence boundary detec-
tion is treated as a sequence classification problem, where
each word boundary is labeled as either a sentence boundary,
a disfluency interruption point, or a clean word transition.
Therefore, disfluency is viewed from a different perspective,
as an interruption point, where once it occurs a new segment
boundary is added. Baron et al. find that combining prosodic
and word-based classifier information yields the best results
for the given task.

While the previous works have focused on enhancing the
performance of speech recognition, Peitz et al. [6] compared
the translation performance using three different methods to
punctuate TED talks. They compare methods depending on
when and how the punctuation marks are inserted: prediction
in the source language, implicit prediction, and prediction
in the target language. They assumed that the proper seg-
ments are already available, but punctuation marks are miss-
ing therefore should be inserted. Among the three systems,
translating from unpunctuated to punctuated text achieves
the largest improvements. Later this work is extended in [7]
for MT of university lectures, where a monolingual transla-
tion system is used for punctuation combined with sentence
boundary detection. They prepare the training data by cut-
ting it randomly, so that detection of sentence-like units is
possible.

Cho et al. [8] use a monolingual translation system to-
gether with CRF-based disfluency removal. Using a CRF
model, the disfluency probability of each token is obtained
and encoded into word lattices so that potentially disfluent
paths can be skipped during decoding.

MT of multi-party meetings was studied in [9], with a
particular view towards analyzing the importance of model-
ing contextual factors. They showed that word sense disam-
biguation using topic and domain knowledge yields a large
improvement on MT performance.

Recently Hassan et al. [10] investigated the impact of
segmentation and disfluency removal on translation of tele-
phone speech. They use a CRF model to detect sentence
units and a knowledge-based parser for complex disfluency
removal.

There are several notable differences between our and
previous work. Contrary to many works in disfluency re-
moval and punctuation insertion, our work is expanded to
the MT. Our systems are designed for multi-party meetings
unlike [7, 10]. We focused on segmentation and disfluency
issues in multi-party meetings, while [9] studied the meet-
ings with focus on word sense disambiguation. Additionally,

the importance of training the models on out-of-domain data
is investigated in our work.

3. Task
Before describing the techniques to translate multispeaker
speech, the corpus and its characteristics are described. The
section is concluded with an overview of the system archi-
tecture to detect speech disfluencies and punctuation marks
used in this evaluation.

3.1. Multi-party meeting data

Our corpus consists of project meetings between project par-
ticipants with various topics. We use eight sessions, where
each meeting involves 5 to 12 different speakers. All meet-
ings are held in English. As in real meeting scenarios, the
meeting participants consist of native and non-native English
speakers. The eight meeting sessions are transcribed and
then disfluencies are manually annotated. We use five of the
meetings for training the disfluency removal model and the
remaining three for testing. The test data is translated into
French in order to evaluate the translation performance.

3.1.1. Speech disfluencies

Disfluencies in the meeting data are annotated manually by
human annotators. Previous work on disfluencies [2, 11, 12]
categorized the disfluencies into three groups: filler,
(rough)copy, and non-copy. filler contains filler
words as well as discourse markers. Therefore, this class in-
cludes words such as uh, you know, and well in some cases.
As the class name suggests, (rough)copy includes an ex-
act or rough repetition of words or phrases. In spontaneous
speech, speakers may repeat what has been already spoken,
as stutter or correction. For example, a sentence There is,
there was an advantage has (rough)copy in the phrase
there is. non-copy includes the cases where the speaker
aborts previously spoken segments and starts a new segment.
It can be rather moderate, so that the newly started fragment
still has the same theme as the previously spoken segment. In
a more extreme case, however, the speaker may introduce an
entirely different topic in the new fragment. For example, in
the following sentence from our meeting data: I don’t think
it’s the, the crucial thing is that we can compile with..., the
part before the comma is annotated as non-copy.

After looking into the data, we decided that the disflu-
ency annotations for the multispeaker speech task has an ad-
ditional category, interruption. While the other three
categories of disfluency can be used for other tasks such as
monologue, the last class interruption is devised for
this new task. In multispeaker speech, generally there are
more than two speakers involved. Therefore, there are many
parts of utterances which are interrupted by other speakers.
Those segments which are interrupted and therefore could
not be finished were classified as interruption.

The number of tokens of each class of disfluencies and its
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Table 1: Meeting data statistics

Class Training Testing
filler 2,666 6.9% 999 6.7%
(rough)copy 2,232 5.8% 1,017 6.8%
non-copy 802 2.1% 331 2.2%
interruption 1,350 3.5% 864 5.8%
clean 31,507 81.7% 11,660 78.4%
SUM 38,557 100% 14,871 100%

proportion are shown in Table 1. The numbers do not include
punctuation marks, but only words. Both the training and
test data have around a disfluency rate of around 20%, which
is much higher than the rate reported in [13], where lecture
data has a disfluency rate of roughly 10%. Around 7% of the
word tokens in the meeting data are simple disfluencies, or
filler words, while the other 11 to 15% are more difficult to
detect.

3.1.2. Segments

The training data shown in Table 1 consists of 4.6k sentences,
while the test data has around 2.1k sentences. We found that
multi-party meeting data has the characteristic that each seg-
ment is rather short. In average, for all meeting data we have,
there are around 8 words per segment. This is quite short
compared to, for example, lecture data, which has around
15 words per segment [13]. We also compare the number
of segments to the training data of our MT system, which is
mainly parliamentary proceedings and news text. This data
has around 24 words per segment.

Figure 1: Statistics on number of words in segment
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Figure 1 depicts the distribution of segment length for
every corpus. In the meeting data short segments are the ma-
jority, especially one word segments. There are many seg-
ments which only consist of one word, such as yes or okay.
Although some of them are discourse markers and therefore

annotated as filler disfluency, some of them are also left
intact when those tokens are actually used to convey mean-
ing. This is therefore another challenge of detecting disflu-
encies in meeting data. Another cause of the short segments
is that there are also many short segments which are inter-
rupted by another speaker and therefore aborted. The lecture
data, which also consists of spoken language, also has higher
frequency of shorter segments, compared to the conventional
MT training data which has more segments whose length is
longer than 15 words.

3.1.3. Example

Table 2 shows an example excerpt from the meeting data.
Following the annotation conventions described in [13],
filler tokens are marked with <>, and (rough)copy
tokens are marked with +//+. non-copy tokens are
tagged with −//−, and finally interruption are marked
with #//#. In this excerpt, the first speaker tried to start a
new fragment (starting what), then a filler word is occurred
(uh), and then the fragment is aborted, then yet another frag-
ment is started (how far). But this last fragment is interrupted
by the next speaker. We can also observe repetition.

Table 2: Meeting data example with disfluency annotation

A: I haven’t heard anything, so I don’t know -/what/-
<uh> #/how far/#

B: I will check for that.
C: Why is the API so hard?

We’re waiting for a month now for this.
D: I don’t know +/the last/+ the last meeting outcome <uh>

he said he could give us API at the end of the month.
C: Okay.

3.2. System architecture

In this work, we chose a work scheme where the output
stream from an ASR system passes first through an auto-
matic disfluency detection system. Based on this cleaned-up
stream, punctuation and segmentation insertion is performed.
Once the disfluencies in the ASR output are removed and
punctuation marks are inserted, the cleaned, punctuated data
goes through the MT system like normal input data.

Disfluency detection is performed prior to the punctua-
tion and segmentation insertion, because this way punctua-
tion insertion can be trained on much larger data. While dis-
fluency removal can be only trained on disfluency-annotated
data, punctuation insertion can be trained on more data. For
the disfluency removal model, we use data of two different
domains: multi-party meeting and lecture. As the first do-
main, we train the model using five meeting sessions, which
sum up to 38.6k annotated words. In order to model the case
where we have no in-domain data, we train the second model
using lecture data. We use web-based seminar lecture data
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given in English as well as the annotated English reference
translation of the German lecture data shown in [13]. The
lecture data sums up to 104k annotated words, and shows a
moderate level of disfluency.

The punctuation insertion model is not trained using the
meeting data, but using the English side of the MT training
corpus, which consists of well-segmented, clean text.

Once the models are built, they are applied to the remain-
ing three meeting sessions. The test data consists of 2.1k
segments with 14.9k English words and 11.4k French words.
After cleaning up the disfluencies manually, the source side
contains 11.7k English words.

3.2.1. Turn information

For MT of multi-party meetings, turn information can play
a big role, since knowing who spoke when can provide ba-
sic segmentation. However, turn information is not always
available.

In order to compare and study the impact of turn infor-
mation on our models, we assume two scenarios: in the first
scenario turn information is available while in the second one
it is not available. With the turn information, basic segment
information according to speaker changes is available. Even
though this may not be the exact sentence segmentation, it
can offer a reasonable baseline for segmentation and punctu-
ation insertion. It can also offer additional features for dis-
fluency detection. As it is possible to know which segment
is started by which speaker, we can obtain a cue that the pre-
vious segments’ last tokens could have been interrupted by
the new speaker, given the fact that meetings contain a lot of
interruptions.

When the turn information is not available, there is no ba-
sic segmentation. Therefore it is required to chunk the stream
of ASR output into segments. Different tactics on segmen-
tation and punctuation insertion will be described in Section
5.

4. Disfluency Detection
In the disfluency detection model, we start with a sequence
of words as input and need to mark parts of the sequence
as disfluencies. This problem can intuitively be modeled as
a sequence labeling task, where each word is either labeled
by one of the disfluency classes (filler, (rough)copy,
non-copy, and interruption), or by a label represent-
ing clean speech. Since sequence labeling is a common prob-
lem in NLP, it has been studied intensively. One succesful
approach to model these problems is using CRF. As CRFs
can represent long-range dependencies in the observations,
they have shown good performance in sentence segmentation
[14], parts of speech (POS) tagging [15] and shallow parsing
[16]. In this work we use the CRF model implemented in the
GRMM package [17] to mark the speech disfluencies. The
CRF model was trained using L-BFGS, with the default pa-
rameters of the toolkit.

4.1. In-domain vs. out-of-domain data

In the ideal case, disfluency annotated in-domain data is
available for training the CRF model. However, the an-
notation of speech for different domains can be very time-
consuming. As disfluency annotated lecture data [13] is
available, we use this data as our out-of-domain training data
for the CRF model. As in-domain training data we use the in-
house English meeting data. This will show whether the dis-
fluency removal model is portable across different domains.

Compared to the meeting data, lecture data has differ-
ent characteristics. Although it still provides general speech
disfluencies such as repetitions or filler words, lecture data
in general contains a moderate level of speech disfluencies
compared to the quite noisy meeting data. Especially, un-
like meeting data, lecture data does not contain interruptions
by other speakers. Therefore, for testing the CRF model
using lecture data, we mapped interruption onto the
non-copy class.

As a test data of the CRF model, we use the test data de-
scribed in Section 3. After potential disfluencies are detected
and removed, punctuation and segmentation are inserted into
this test set, which is then used as input for MT.

4.2. Features

As features for CRF, we use lexical and language model
(LM) features inspired by the work in [11]. Lexical features
include current and adjacent words/POS tokens, whether the
current word is a partial word, and whether words or POS
tokens are showing repetitive patterns. LM features include
unigram and 4-gram LM scores, and their ratio. In addition
to these features, following [12], features obtained from a
word representation in vectors and phrase table information
are used. Each word is represented as a word vector with
100 dimensions as shown in [18]. Afterwards the vectors are
clustered into 100 clusters using the k-means algorithm. We
use the cluster number of each word as one of the features, as
well as the repetitive pattern of the cluster code and adjacent
words’ cluster codes. For the phrase table information, we
use the phrase table which is used for the actual MT of the
task and check the potential translations of each word.

As mentioned earlier, we assumed two scenarios about
turn information availability. In the scenario where the
turn information is available, we extracted the word posi-
tion within the turn. We expect that disfluencies can be
more prominent in the initial part of each turn, because many
stutters as well as corrections occur within the first several
words. In addition, as interruptions between speakers occur
at end of each turn, we encoded whether the current token is
one of the first or final 5 words of the turn in order to incor-
porate this information for the training.

The CRF model is trained with a bigram feature, so that
first-order dependencies between words with a disfluency
can be modeled.
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5. Segmentation and Punctuation Insertion
After removing disfluencies, the main difference between
written text and the disfluency-removed speech is the lack
of punctuation marks. In recent work [6], it has been shown
that a promising approach to translate unpunctuated text is
to automatically insert punctuation marks and segmentation
prior to translation. Therefore, we analyzed three different
methods to segment and punctuate the multi-party meeting
data: simple LM-based segmentation, turn segmentation, and
monolingual translation system.

5.1. Simple LM-based segmentation

Assuming there is no information about different speakers
and their turns available, ASR of such a talk would generate
a stream of words. For translation, it is necessary to segment
the stream of words. As a baseline system, we segmented
based on a hard threshold of word-based LM scores. First
we concatenated the test data into a single line without any
punctuation marks, in order to mimic the ASR output. We
use a 4-gram LM trained on the punctuated English side of
the MT training corpus and measure the probability of a final
period given the previous words. When the probability ex-
ceeded an empirically chosen threshold, we inserted a final
period and started a new segment. The output of this baseline
system consists of segments where each segment ends with a
final period.

5.2. Turn segmentation

If we have access to turn information, we can exploit this in-
formation in order to obtain a better baseline segmentation.
We inserted a final period and began a new segment when-
ever the speaker changed. Each segment of this system may
contain more than one actual sentence, with no further punc-
tuation marks within the segment.

5.3. Monolingual translation system

Cho et al. [7] successfully used a monolingual translation
system to insert punctuation marks into non-punctuated Ger-
man lecture data. Following this approach, we built a mono-
lingual translation system from non-punctuated English to
punctuated English. While the previous two methods in-
sert only final periods, this system can insert all punctuation
marks appeared in the training data. As training data we used
the English side of the MT training corpus. This MT train-
ing corpus is ideally segmented and contains all punctuation
marks, including a final period at the end of each sentence.
In order to learn where segment breaks should be inserted,
we throw away the segmentation and randomly cut the En-
glish side of the data. Aiming to generate data that is similar
to the test data, we limit the length of segments to 22 words.
The test data goes through the monolingual translation sys-
tem with a sliding window of 10 words.

For the scenario where turn information is available, we

build an additional, slightly different monolingual translation
system. When we have the turn information, several seg-
ments uttered by a speaker are concatenated. Therefore, in
order to make the training data similar to the test data, we
concatenated one to three sentences randomly into one sen-
tence. Punctuation marks between sentences are removed,
and only a final period is added at the end of each line of
the source side data. The target side contains all punctuation
marks.

6. Experiments
In this section, we briefly describe the MT system we use
in our experiments. Oracle experiments and the results are
given, followed by results of segmentation and punctuation
insertion. The results of disfluency removal are analyzed.
Finally, the overview of our system is given in the end.

6.1. System description

The translation system is trained on 2.3 million sentences of
English-French parallel data including the European Parlia-
ment data and the News Commentary corpus. The parallel
TED data1 is used as in-domain data for the MT models. As
development data, we use manual transcripts of TED data.

Preprocessing which consists of text normalization and
tokenization is applied before the training. In order to build
the phrase table, we use the Moses package [19]. Using the
SRILM Toolkit [20], a 4-gram language model is trained on
683 million words from the French side of the data. A bilin-
gual language model [21] is used to extend source word con-
text. The POS-based reordering model as described in [22]
is applied to address different word orders between English
and French. We use Minimum Error Rate Training (MERT)
[23] for the optimization in the phrase-based decoder [24].
All scores of translation into French are reported in case-
sensitive BLEU scores [25] in this paper. When the sentence
boundaries differ from the reference translation, we use the
Levenshtein minimum edit distance algorithm [26] to align
hypothesis for evaluation.

6.2. Oracle experiments

Table 3 shows the translation performance for oracle punctu-
ation marks and oracle disfluency removal on the multi-party
meeting data.

Table 3: Oracle experiments

System No turns Turns
Baseline 9.53 12.93
Oracle segmentation 13.96
Oracle punctuation 15.64
Oracle disfluency 12.21 15.72
Oracle all 20.93

1http://www.ted.com
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In the first system, all disfluencies are kept and baseline
segmentations are used. As the baseline segments, we use
two different segmentation methods. When there is no turn
information available, segmentation and final periods are in-
serted using the simple LM-based method as described in
Section 5.1. On the other hand, when we have access to the
turn information, a new segment and a final period are in-
serted whenever the speaker changes as described in Section
5.2. We can observe that using the turn information is very
helpful in achieving better performance.

Then we insert oracle segmentation and a final period at
the end of segment. When we also inserted all other punctu-
ation marks from the reference transcript, the translation per-
formance is improved up to 15.64 BLEU points even though
it still contains all disfluencies. We can observe that nearly
1.7 BLEU points are achieved by inserting all other punctu-
ation marks, on top of we have the ideal reference segmenta-
tion and a final period.

In the next experiment, we keep the punctuation and seg-
mentation the same as in the baseline system, but remove all
of the manually annotated disfluencies. By doing so, transla-
tion performance is improved by around 3 BLEU points com-
pared to the baseline system. Finally, we achieved BLEU
score of 20.93 when we have the oracle for both punctuation
and disfluency. This is the upper bound of the performance
we can get for this test set when we have both perfect seg-
mentation/punctuation and disfluency removal.

As shown by these numbers, the performance can be im-
proved by more than 10 BLEU points if the ideal punctuation
and disfluency detection are applied. Therefore, modeling
these two problems in a translation system of mutispeaker
speech is essential to reach a good translation quality.

6.3. Segmentation and punctuation insertion

In this section, we look into the performance of the segmen-
tation and punctuation in a realistic approach (all disfluencies
kept) and perfect conditions (remove all disfluencies using
the manual annotation).

Table 4: Punctuation insertion, no turn information

System Keep disf. Oracle disf.
Baseline 9.53 12.21
Mono. trans. 12.44 16.34
Oracle punctuation 15.64 20.93

Table 4 shows the results under the assumption that no
turn information is available. The baseline system has punc-
tuation and segmentation inserted using the simple LM-
based method. When punctuation marks are inserted us-
ing the monolingual translation system, we achieved an im-
provement of 3 to 4 BLEU points for both disfluency con-
ditions. This improvement reaches almost half of the differ-
ence between the baseline systems and oracle scores. We can
also observe that when segmentation and punctuation are im-

proved, the impact of disfluencies increases. There is bigger
room of improvement which can be achieved by removing
correct disfluencies, when we have better segmentation and
punctuation. The same phenomena can be observed in the
experiments with turn information, as shown in Table 5.

Table 5: Punctuation insertion, with turn information

System Keep disf. Oracle disf.
Baseline 12.93 15.72
Mono. trans. 13.25 17.71
Oracle punctuation 15.64 20.93

We can observe that the baseline scores in this case have
already improved a lot over the experiments without turn in-
formation. Since the baseline segmentation is already better,
the improvements are smaller, but there are still consistent
improvements when inserting punctuation marks using the
monolingual translation system.

6.4. Disfluency removal

This section presents translation performance when we apply
the disfluency removal models trained either on in-domain
or out-of-domain data. Punctuation and segmentation are in-
serted not only by the monolingual translation system for the
realistic case, but also oracle punctuation is used for compar-
ison.

Table 6: Disfluency removal, no turn information

System Mono. trans. Oracle punct.
Keep disfluency 12.44 15.64
CRF in-domain 14.41 17.26
CRF out-of-domain 14.24 16.95
Oracle disfluency 16.34 20.93

Table 6 shows the scores under the assumption that there
is no turn information available. In the first experiment, we
keep all disfluencies. Then we show the scores when we use
the disfluency removal model trained only on the in-domain
data, multi-party meeting data. These scores are compared
with the scores when we use the model trained only on the
out-of-domain data, which is lecture data. Finally, we show
the scores removing all disfluencies annotated. An interest-
ing point is that using lecture data for training the CRF model
yields similar performance to training using the meeting data.
Even though using the lecture data is slightly worse than us-
ing the meeting data, the difference is minimal.

Our preliminary experiments showed that when we use
the in-domain data for training the disfluency removal model,
we have around 8 points better F-scores, compared to the
case when we train the model using out-of-domain data.
However, such differences are not pronounced in terms of
BLEU. It shows that the disfluency modeling technique
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shown in this work can be transfered into a new domain with-
out causing a big loss of performance in MT.

Table 7: Disfluency removal, with turn information

System Mono. trans. Oracle punct.
Keep disfluency 13.25 15.64
CRF in-domain 15.01 17.10
CRF out-of-domain 14.90 17.03
Oracle disfluency 16.34 20.93

This result is also observable when the models are trained
with turn information, as shown in Table 7. The disflu-
ency removal model trained on meeting data performs only
slightly better than the lecture data. In all listed conditions,
it is shown that we can improve the translation quality by 1.5
to 2 BLEU points by removing disfluencies.

6.5. Combined modeling of punctuation insertion and
disfluency removal

As an additional experiment, we model punctuation marks
and disfluencies in one model. This yields the advantage that
it is not necessary for ASR output to pass through two differ-
ent steps. We also hope that this experiment can provide the
first insight on MT performance when modeling these two in
one model for the given task. In this scheme, both the punc-
tuation marks as well as disfluencies are predicted given the
potentially disfluency, and unpunctuated ASR output. For
modeling we use the same features as for the disfluency re-
moval. Thus, punctuation and disfluencies are trained using
the data with speech disfluencies. For the modeling, we use
the same CRF tool, but with two decision labels: one with
disfluency classes and another one with punctuation marks.

Table 8: Punctuation insertion and disfluency removal in one
model

System No turn Turn
Baseline 9.53 12.93
Combined CRF in-domain 13.92 14.45
CRF in-domain + Mono. trans. 14.41 15.01
Combined CRF out-of-domain 13.99 14.58
CRF out-of-domain + Mono. trans. 14.24 14.90
Oracle all 20.93

Table 8 presents the results of this experiment. When
modeling punctuation marks and disfluency removal together
in one model, it still provides a big improvement over the
baseline, where all disfluencies are kept. Same as in the pre-
vious experiments, training the models on in-domain or out-
of-domain data does not cause a big performance difference
in MT. Comparing the scores of training the models sepa-
rately for disfluencies and punctuation marks, however, the
scores are generally around 0.3 to 0.5 BLEU points worse.
The F-score of disfluency removal does not get affected sig-

nificantly even when we are modeling it along with punctua-
tion marks. However, as the monolingual translation system
is trained using much more data, the performance of seg-
mentation and punctuation insertion is affected and therefore
degrades the overall performance.

6.6. Overview

Finally, Table 9 shows the best scores achieved in this work.

Table 9: Overview

System No turn Turn
Baseline 9.53 12.93
Best system 14.41 15.01
Oracle 20.93

In our best system we first remove disfluencies using a
CRF model trained on the in-domain data, and then insert
proper segmentation and punctuation marks using the mono-
lingual translation system. When there is no turn informa-
tion, we achieve around 4.9 BLEU points of improvement.
With turn information, we improve the system by around 2.1
BLEU points.

7. Conclusion
In this paper, we showed how machine translation perfor-
mance is affected when different techniques for segmenta-
tion, punctuation insertion and disfluency removal are ap-
plied to multispeaker speech. The characteristics and differ-
ences of multispeaker speech compared to other data were
described. We built two separate disfluency removal sys-
tems using in-domain and out-of-domain data and their per-
formances are compared in terms of translation quality. We
showed that our disfluency removal technique presented in
this work can be transfered to a new domain. Segmenta-
tion and punctuation insertion systems are applied after the
disfluencies are removed. The best system of disfluency re-
moval and punctuation detection models achieves a gain of
4.9 BLEU points when there is no turn information and 2.1
BLEU points when turn information is available over the
baseline. As an additional experiment, a sequence tagging
model which models both segmentation, punctuation inser-
tion and disfluency removal is built and the performance is
compared to our best automatic systems.

In future work, we would like to explore integrating seg-
mentation, punctuation insertion and disfluency removal sys-
tems into end-to-end speech translation systems for real-time
evaluation.
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[13] E. Cho, S. Fünfer, S. Stüker, and A. Waibel, “A Corpus
of Spontaneous Speech in Lectures: The KIT Lecture
Corpus for Spoken Language Processing and Transla-
tion,” in LREC, Reykjavik, Iceland, 2014.

[14] Y. Liu, A. Stolcke, E. Shriberg, and M. Harper, “Us-
ing Conditional Random Fields for Sentence Boundary
Detection in Speech,” in ACL, Ann Arbor, MI, USA,
2005.

[15] J. Lafferty, A. McCallum, and F. Pereira, “Conditional
Random Fields: Probabilitic Models for Segmenting
and Labeling Sequence Data,” in ICML, Williamstown,
MA, USA, 2001.

[16] F. Sha and F. Pereira, “Shallow Parsing with Con-
ditional Random Fields,” in HLT/NAACL, Edmonton,
Canada, 2003.

[17] C. Sutton, “GRMM: A Graphical Models Toolkit,”
2006. [Online]. Available: http://mallet.cs.umass.edu

[18] T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Ef-
ficient Estimation of Word Representations in Vector
Space,” in Workshop at ICLR, Scottsdale, AZ, USA,
2013.

[19] P. Koehn, H. Hoang, A. Birch, C. Callison-Burch,
M. Federico, N. Bertoldi, B. Cowan, W. Shen,
C. Moran, R. Zens, C. Dyer, O. Bojar, A. Constantin,
and E. Herbst, “Moses: Open Source Toolkit for Sta-
tistical Machine Translation,” in ACL, Demonstration
Session, Prague, Czech Republic, 2007.

[20] A. Stolcke, “SRILM – An Extensible Language Mod-
eling Toolkit.” in ICSLP, Denver, CO, USA, 2002.

[21] J. Niehues, T. Herrmann, S. Vogel, and A. Waibel,
“Wider Context by Using Bilingual Language Mod-
els in Machine Translation,” in WMT, Edinburgh, UK,
2011.

[22] K. Rottmann and S. Vogel, “Word Reordering in Statis-
tical Machine Translation with a POS-Based Distortion
Model,” in TMI, Skövde, Sweden, 2007.
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Abstract
We conduct dependency-based head finalization for statisti-
cal machine translation (SMT) for Myanmar (Burmese). Al-
though Myanmar is an understudied language, linguistically
it is a head-final language with similar syntax to Japanese and
Korean. So, applying the efficient techniques of Japanese
and Korean processing to Myanmar is a natural idea. Our
approach is a combination of two approaches. The first is
a head-driven phrase structure grammar (HPSG) based head
finalization for English-to-Japanese translation, the second
is dependency-based pre-ordering originally designed for
English-to-Korean translation. We experiment on Chinese-,
English-, and French-to-Myanmar translation, using a sta-
tistical pre-ordering approach as a comparison method. Ex-
perimental results show the dependency-based head finaliza-
tion was able to consistently improve a baseline SMT sys-
tem, for different source languages and different segmenta-
tion schemes for the Myanmar language.

1. Introduction
The state-of-the-art techniques of statistical machine transla-
tion (SMT) [1, 2] demonstrate good performance on trans-
lation of languages with relatively similar word orders [3].
However, word reordering is a problematic issue for lan-
guage pairs with significantly different word orders, such
as the translation between a subject-verb-object (SVO) lan-
guage and a subject-object-verb (SOV) language [4].

To resolve the word reordering problem in SMT, a line
of research handles the word reordering as a separate pre-
process, which is referred as pre-ordering. In pre-ordering,
the word order on source-side is arranged into the target-
side word order, before a standard SMT system is applied,
on both training and decoding phases. The pre-ordering pro-
cess can be realized in either a rule-based way or a statistical
way. Generally, a rule-based approach needs a high-precision
parser and effective manually designed rules; and a statistical
approach needs data for model training.

An effective rule-based approach, head finalization has
been proposed for English-to-Japanese translation [4]. The
approach takes advantage of the head final property of
Japanese on the target-side. It designs a head finalization rule
to move the head word based on the parsing result by a head-
driven phrase structure grammar (HPSG) parser. Generally,
the idea can be applied to other SVO-to-Japanese translation
tasks, such as its application in Chinese-to-Japanese transla-
tion [5]. However, an HPSG parser is not available for many
languages, which prevents the HPSG-based head finalization
from being applied to more languages. On the other hand,
dependency parsers are available for more languages. A typ-
ical rule-based pre-ordering using dependency structure was
proposed in [6]. Their approach used a rule set to arrange the
order of a head word together with its modifiers.

In this paper, we explore dependency-based head final-
ization for an understudied language, Myanmar1. We use the
dependency structure to realize the head finalization of [4].
Because the head finalization only moves a head word after
all its modifiers, the proposed dependency-based head final-
ization is a simplified version of [6], which keeps the order of
modifiers unchanged. So, our approach is simple and widely
applicable for different source languages. On the target-
side, there are no standard part-of-speech set and morpheme
analysis tools available for Myanmar word segmentation yet,
so we employ two word segmentation schemes: syllable-
based and dictionary-based maximum matching. Experi-
ments on Chinese-, English-, and French-to-Myanmar trans-
lation show that simple head finalization can efficiently and
stably improve a baseline SMT system, no matter what the
source-side language is or which segmentation scheme is
used. We use a statistical pre-ordering approach [7] as a
comparison method. We observe it performs well on certain
situations, but it is sensitive to the source-side language and
segmentation schemes.

1The language may be more referred as Burmese in English though, in
this paper, we refer it consistently as Myanmar.
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彼 が 本 を 先生 に あげる Japanese 

그 가 책 을 선생님 에게 올린다 Korean 

သူူ  သည် စာအုပ် ကုိ ဆရာ တပး အား သည် Myanmar 

he 
nominative 

marker book 
accusative 

marker teacher 
dative 

marker give 
present 

marker 
English literally 

Figure 1: Example of a Myanmar sentence “ သူူ သည် စာအုပူ်ကုိ ဆရာအား တပးသညူ် ” (English translation “he gives the book to
the teacher”). The first row shows the morphemes in the Myanmar sentence, one-box-one-morpheme. Content morphemes are
illustrated in black and functional morphemes are in gray. The second row is the English literal translations of them. In the
two lower rows, Japanese and Korean translations of the Myanmar sentence are also shown, morpheme-by-morpheme. Both the
Japanese and Korean sentences are grammatically correct, from which the syntactic similarity can be observed. The right-most
boxes in Japanese and Korean sentences, which contain the verbs, should be noticed. The corresponding parts of Myanmar
present marker in these two languages are inflection endings which cannot be detached from the verb stems (marked by gray, in
the case of Korean, more correctly, the “ ㄴ다 ” part). While Myanmar has a completely detachable marker from the verb stem.

This paper is organized as follows. In Section 2, we give
an introduction to the Myanmar language. In Section 3, we
discuss related approaches. In Section 4, we describe the
proposed approach. In Section 5, we show the experimen-
tal results and present a discussion. Section 6 contains the
conclusion and future work.

2. Myanmar Language
Myanmar is an SOV language that demonstrates a consistent
head-final typology. Syntactically, Myanmar is quite sim-
ilar to Japanese and Korean, where functional morphemes
succeed content morphemes, and verb phrases succeed noun
phrases. We show an example in Fig. 1 to show the features
of Myanmar and its similarity to Japanese and Korean.

On the other hand, unlike Japanese and Korean, which
are typical agglutinative languages, Myanmar is an ana-
lytic language, in which the morphemes are without inflec-
tion. This is because Myanmar is a monosyllabic language
originally, where morphemes are only composed by non-
inflected single syllables. Although Buddhism-related loan-
words from the Pali language and modern loanwords from
western languages have introduced polysyllabic morphemes
into Myanmar, the basic framework of syntax has not been
affected.

3. Related Work
As mentioned, Myanmar is an understudied language that
has quite similar (or, even simpler) characteristics to
Japanese and Korean, both of which are well studied. A
natural idea is that we can transfer the Japanese or Korean
language processing techniques to Myanmar.

HPSG-based head finalization [4] and dependency-based

pre-ordering [6] are two typical rule-based pre-ordering ap-
proaches. Originally, the former was designed for Japanese
and the latter for Korean. Further differences between the
two approaches first lies in the linguistic formulation they
used, which leads to differences in their rule sets. Essentially,
there is only one rule in the HPSG-based head finalization,
that is the head finalization rule itself. The simplicity of the
rule set can be attributed to the sophisticated analysis by an
HPSG parser, which shows the phrase structural as well as
the syntactic head. On the other hand, the rule set in [6] con-
tains about 20 rules, in order to arrange the position of a head
word with its modifiers. It can be observed that a good HPSG
parser is required for [4] if we want to expand the approach to
more source-side languages, despite the simple rule. While
a dependency parser is available for more languages, the rule
set in [6] is dependent on the part-of-speech (POS) tag set
and dependency arc label set of the dependency parser used.
The approach used in our experiments combines the simplic-
ities of the two previous approaches. We use dependency
parsers to conduct the head finalization alone without touch-
ing the arrangement of various types of modifiers.

There are also statistical pre-ordering approaches. The
work of [8, 9] are early syntax-oriented approaches, that they
introduce separate reordering modules into SMT systems.
Recently, the approach in [10] learns pre-ordering automati-
cally from an aligned corpus. This approach achieves nearly
same performance as the rule-based approach of [6] (Table
4 in [10]). In [7], a method to learn a discriminative parser
for pre-ordering from an aligned parallel training corpus is
proposed. The approach takes the derivation tree as a la-
tent variable and trains a model to maximize reordering mea-
sures. The approach is fully unsupervised but needs high
quality training data (i.e., a word-aligned parallel corpus). In
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’ll have i a slice of pizza with pepperoni and mushroom 

’ll have i a slice of pizza with pepperoni and mushroom 

Figure 2: Pre-ordering example of English sentence “i ‘ll have a slice of pizza with pepperoni and mushroom”.

dial zero first , then dial the number you would like to call 

dial zero first , then dial the number you would like to call 

Figure 3: Pre-ordering example of English sentence “first dial zero , then dial the number you would like to call”.

the experiments reported in [7], they show the model trained
by a manually aligned parallel corpus outperforms the model
trained by an automatically aligned parallel corpus of more
than ten times the size. We take the approach of [7] as a base-
line in our experiment, to explore the different characteristics
of the rule-based and statistical pre-ordering approaches.

4. Head Finalization for Myanmar
4.1. Basic Principle

The dependency-based head finalization used in our experi-
ment is according the following principle.

• To move the head word after all its modifiers, but

1. do not break a coordination structure;

2. do not cross a punctuation mark;

3. auxiliary verbs come after their head verb.

We show two examples of the English sentence in Fig. 2
and Fig. 3. The dependency structures are marked by arcs
over the words. In Fig. 2, “pepperoni and mushroom” is a
coordination structure with the first word “pepperoni” as a
head word. We do not apply head finalization in this kind of
structure in order to keep the original order of coordinating
components. In Fig. 3, the root word of the sentence, i.e.
the first dial, does not cross the comma after it. We disable
head finalization in this situation to avoid excess reordering
between clauses.

As to the auxiliary verbs (3), many widely-used depen-
dency parsers handle this kind of functional word as the mod-
ifier of a verb, just as an article becoming the modifier of a

noun. While we consider auxiliary verb should be the head
of a verb, and actually, in typical head-final languages the
auxiliary verbs are always placed after the verb. So we ar-
range auxiliary verbs after their head verb. E.g., in Fig. 2, we
keep the “‘ll” after the verb “have”; and in Fig. 3, “to ” after
“call”.

We describe detailed source-language dependent features
in the appendices.

4.2. Myanmar Oriented Process

In the original head finalization approach, a morpheme gen-
eration process is used also to generate certain target-side
grammatical markers which are absent in the source-side lan-
guage. Specifically, in [4], they insert three types of tag for
topic marker, nominative marker, and accusative marker in
the source-side English. However, this issue is not so serious
for Myanmar because it has a strong tendency to omit these
grammatic markers as long as no ambiguity arises2. So we
do not apply this generation process in [4] in our approach.

On the other hand, negation in Myanmar, unlike in
Japanese or in Korean, where it is realized by a negation aux-
iliary word as a suffix of the verb, is realized by a prefix “ မ ”
before the verb3. Further, as a collocation of the negation pre-
fix, a negation suffix “ဘူူ း ” must succeed the verb. Finally,
the prefix and suffix surround a verb to form a negation. The
phenomenon is rather like the “ne ... pas” in French. How-
ever, the “pas” is not fixed and can be replace with “plus”

2Actually, the example of a Myanmar sentence given in Fig. 1 is a quite
formal expression which is rare in daily communication. We show it mainly
to illustrate the syntactical similarity to Japanese and Korean.

3In Korean, there are also alternative prefixes used instead of negation
suffixes. While in Myanmar, the negation prefix is used consistently.
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or “jamais” and so forth according the meaning in French,
while the prefix and suffix are fixed in Myanmar. We use a
neg tag for the negation suffix generation. Specifically, the
negation word of a verb is placed immediately before the
verb and the neg tag is inserted immediately after the verb.

We use the same strategy as [4] to delete the articles in
the source-side language (if any). As shown in Fig. 2 and
Fig. 3, the “a” and “the” are deleted (marked in gray).

5. Experiments
5.1. Corpus and Settings

We use Basic Travel Expression Corpus (BTEC) [11] in the
experiments. The source languages are Chinese (zh), En-
glish (en), French (fr) and the target language is Myanmar
(my). The corpus statistics are is shown in Tables 1, 2 and 3.
Specifically, the training, development, and test data for zh-,
en-, and fr-my translations contain identical Myanmar sen-
tences. We use two segmentation schemes for the morpheme
process of Myanmar sentences. One is syllable-based (syl)
[12] and the other is maximum marching (mmx) based on a
dictionary with more than 20, 000 Myanmar lexicon entries.
The token numbers of the two schemes are listed in the my
rows in the tables (syl / mmx). Due to multi-syllable to-
kens, the syl has larger token numbers than mmx. We show
a simple segmentation example in Fig. 4. 4

Table 1: Training Corpus.

Lang. Sentences Tokens (syl / mmx for my)
my 155, 121 1, 835, 687 / 1, 508, 234
zh 155, 121 1, 062, 809
en 155, 121 1, 161, 283
fr 155, 121 1, 248, 764

Table 2: Development Data.

Lang. Sentences Tokens (syl / mmx for my)
my 5, 000 59, 058 / 48, 546
zh 5, 000 34, 103
en 5, 000 37, 496
fr 5, 000 40, 256

Table 3: Test Data.

Lang. Sentences Tokens (syl / mmx for my)
my 2, 000 23, 661 / 19, 425
zh 2, 000 13, 799
en 2, 000 15, 146
fr 2, 000 16, 173

4As we have mentioned, original Myanmar morphemes are monosyllabic
and there are polysyllabic morphemes of loanwords. Actually, “word” is not
a clear (and natural) unit in Myanmar sentence. In mmx scheme, we have
polysyllabic words not only derived from polysyllabic morphemes, but also
derived from fixed patterns of monosyllabic morphemes, as Fig. 4 shows.

syllable 

max-matching 

တကျး ဇူူ း ေင် ပါ ေယ် 

တကျးဇူူ းေငူ် ပါ ေယ် 

morphological တကျးဇူူ း ေင် ပါ ေယ် 

Figure 4: Segmentation example of a Myanmar expression,
meaning “thank you”. The two upper rows are the syllable-
based segmentation, where each box contains a syllable, and
dictionary-based maximum matching, where the first three
syllables are merged. The lower row illustrates a morpholog-
ically oriented analysis, where the first two syllables should
be merged. The meanings of four boxes in the lower row
are approximately: “gratitude”, “put”, polite marker, and
sentence-ending marker.

For the source-side language parsing, we use the Stanford
dependency parser5 for Chinese and English parsing [13, 14].
We use the Stanford tagger6 [15] for French tagging (CC tag
set [16]) and Malt parser7 [17] for French parsing. LADER8

is used to realize the unsupervised approach in [7] as a com-
parison approach. For the model training in LADER, we
randomly sample 1, 000 automatically aligned sentence pairs
from training set because we do not have manually-aligned
data. Table 4 of [7] shows that increasing the training data
for LADER from 600 to 10, 000 automatically aligned sen-
tence pairs only brought a gain of 0.1 – 0.2 BLEU, therefore
we considered a training set size of 1, 000 to be sufficient9.

We use the phrase-based (PB) SMT system in Moses10

[2] as a baseline system. GIZA++11 [18] is used to align
word and alignment is symmetrized by grow-diag-final-and
heuristics [1]. The lexicalized reordering model is trained
with the msd-bidirectional-fe option [19]. The maximum
phrase length is 7. We use SRILM12 [20] to training 5-gram
language model with interpolated modified Kneser-Ney dis-
counting [21] on Myanmar training data.

In decoding, we adopt the default settings of the Moses
decoder except the distortion-limit (DL). That is, ttable-limit
is 20 and stack is 200. We use DL of 0, 6, 12, and ∞ in
the experiments to analyze the reordering abilities of the pre-
ordering and the SMT reordering. We tuned the parameter
weights on the development sets by MERT [22] and evalu-
ated the translation on test sets by using two automatic mea-
sures: BLEU [23] and RIBES [24]. Identical decoding set-
tings were applied on both development sets and test sets.

5http://nlp.stanford.edu/software/lex-parser.
shtml

6http://nlp.stanford.edu/software/tagger.shtml
7http://www.maltparser.org/index.html
8http://www.phontron.com/lader/
9The training of LADER usually takes long time. Under the default set-

tings of LADER, 500 iterations on 1, 000 sentences with 32 threads took
more than 10 hours for each translation task in our experiment.

10http://www.statmt.org/moses/
11https://code.google.com/p/giza-pp/
12http://www.speech.sri.com/projects/srilm/
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Table 4: Test set BLEU / RIBES of zh-my.syl.

DL Baseline LADER Head Final.
0 35.5 / .817 36.2 / .816 38.5 / .835
6 37.9 / .831 37.9 / .830 38.7 / .832
12 38.5 / .832 37.9 / .830 38.8 / .832
∞ 38.4 / .834 38.3 / .831 38.6 / .832

Table 5: Test set BLEU / RIBES of en-my.syl.

DL Baseline LADER Head Final.
0 40.4 / .789 47.8 / .861 47.8 / .870
6 45.7 / .842 49.2 / .874 49.9 / .885
12 48.8 / .873 49.6 / .878 50.3 / .886
∞ 49.3 / .875 49.6 / .877 50.2 / .882

Table 6: Test set BLEU / RIBES of fr-my.syl.

DL Baseline LADER Head Final.
0 36.8 / .786 43.9 / .852 43.7 / .850
6 40.9 / .825 45.2 / .859 45.6 / .860
12 45.1 / .861 45.5 / .859 46.5 / .866
∞ 45.7 / .862 45.7 / .857 46.5 / .860

Table 7: Test set BLEU / RIBES of zh-my.mmx.

DL Baseline LADER Head Final.
0 32.9 / .799 34.6 / .810 35.4 / .811
6 34.9 / .816 35.1 / .816 36.5 / .821
12 35.5 / .817 35.7 / .817 36.5 / .819
∞ 35.2 / .816 35.6 / .814 36.5 / .820

Table 8: Test set BLEU / RIBES of en-my.mmx.

DL Baseline LADER Head Final.
0 40.4 / .802 48.0 / .867 47.8 / .871
6 44.7 / .835 48.9 / .871 49.0 / .881
12 48.6 / .873 49.5 / .877 49.8 / .880
∞ 49.0 / .876 49.5 / .875 49.7 / .878

Table 9: Test set BLEU / RIBES of fr-my.mmx.

DL Baseline LADER Head Final.
0 36.9 / .791 43.6 / .844 43.6 / .847
6 39.7 / .818 44.7 / .852 44.9 / .855
12 44.3 / .855 45.1 / .852 45.4 / .855
∞ 44.7 / .856 45.4 / .853 45.3 / .853

5.2. Results

We list the experimental results of three source languages
(zh, en, fr) with two target Myanmar segmentation
schemes (my.syl, my.mmx) in Tables 4 – 12. In each table,
two evaluation measures (BLEU / RIBES) are given with dif-

Table 10: Test set BLEU / RIBES on syl of zh-my.mmx.

DL Baseline LADER Head Final.
0 36.8 / .818 38.0 / .829 38.5 / .829
6 38.4 / .836 39.0 / .835 39.7 / .838

12 39.0 / .837 39.4 / .835 39.9 / .838
∞ 38.6 / .833 39.2 / .832 39.6 / .838

Table 11: Test set BLEU / RIBES on syl of en-my.mmx.

DL Baseline LADER Head Final.
0 45.0 / .814 51.2 / .879 51.5 / .882
6 48.6 / .847 52.1 / .883 52.7 / .891

12 52.0 / .882 52.8 / .887 53.4 / .890
∞ 52.5 / .885 52.8 / .887 53.2 / .889

Table 12: Test set BLEU / RIBES on syl of fr-my.mmx.

DL Baseline LADER Head Final.
0 40.5 / .803 47.0 / .857 46.6 / .860
6 43.1 / .831 48.0 / .865 47.9 / .869

12 47.5 / .867 48.0 / .864 48.4 / .870
∞ 47.8 / .867 48.4 / .865 48.3 / .865

ferent distortion limits (DLs). The best BLEU scores among
the different DLs are underlined and bold BLEU scores are
significantly different (p < 0.05) to the best baseline BLEU
score. As the log-linear model weights were tuned to opti-
mize the BLEU rather than the RIBES score on the develop-
ment sets with MERT, the RIBES scores shown in the tables
are only a complementary evaluation of translation perfor-
mance on word order.

In Tables 4 – 6, the evaluation is on syl and in Tables 7 –
9, on mmx. So the results in the corresponding tables of these
two groups are not comparable. In Tables 10 – 12, we show
the results on syl for mmx outputs. So, the corresponding
results in Tables 4 – 6 and Tables 10 – 12 are comparable.

5.3. Discussion

In Tables 1 – 3, it can be observed that the average sen-
tence length of the corpus used is quite small (all less than
10 except for my.syl). This is because the corpus mainly
contains colloquial, rather than literary sentences. This bias
suggests two problems. First, the state-of-the-art Moses sys-
tem can handle the reordering well for short sentences, where
a pre-ordering approach may not show its power. Second,
there may be more errors in parsing colloquial sentences than
literary ones, which may reduce the performance of rule-
based head finalization.

Using the same analysis as in [4], first we calculate the
average Kendall’s τ on the training sets (Table 13) to investi-
gate the reordering performance. We observed the following
phenomena:
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Table 13: Average Kendall’s τ on training sets.

Language Pair Baseline LADER Head Final.
zh-my.syl .69 .79 .83
en-my.syl .53 .79 .79
fr-my.syl .53 .76 .75
zh-my.mmx .69 .80 .83
en-my.mmx .53 .79 .79
fr-my.mmx .54 .76 .76

• The two different segmentation schemes of Myanmar
lead to very similar average Kendell’s τ .

• LADER can produce an average Kendall’s τ of around
.75 – .80 irrespective of the value of average Kendall’s
τ in its input corpus.

• Dependency-based head finalization shows identical
performance to LADER in en-my and fr-my, but
better performance on zh-my, where the corpus be-
fore pre-ordering already has a relatively high average
Kendall’s τ .

From Table 13, it is noticeable that en-my and fr-my
have nearly identical characteristics while zh-my is different
from them. This phenomenon is reflected in the evaluation
results on the test sets.

In zh-my translation, we find LADER hardly improves
performance over the baseline SMT system in both syl and
mmx, while the head finalization approach improves perfor-
mance over the baseline in both cases and more substan-
tially for mmx. LADER has higher performance on en-my
and fr-my, and the proposed head finalization technique
has identical or better performance. Since the difference in
word order is not as severe for zh-my as for en-my and
fr-my (as indicated by the Kendall’s τ statistics), we con-
sider rule-based head finalization to be a better complemen-
tary approach for the SMT system for zh-my. For language
pairs with considerably different word orders as en-my and
fr-my, LADER and rule-based head finalization, despite
their essentially different mechanisms, attain similar levels
of performance.

In Tables 4 – 12, it can also be noticed that the differences
are quite large between DL = 0 (i.e. monotone translation)
and the corresponding best BLEU in each baseline result, but
the differences are reduced by both pre-ordering approaches.
So, the performance gains over the baseline by using pre-
ordering diminish as the DL is increased. As to the RIBES
score, the differences actually are not substantial between the
baseline, LADER, and the head finalization approach. We
consider these to be reasonable phenomena caused by the
short length of the sentences in the corpus.

A major factor affecting the performance of the rule-
based head finalization approach is the precision of the parser
used, and perhaps the most important factor affecting the
performance of a statistical approach, such as LADER, is

the quality of the training data. In the survey conducted in
[25], they reported “we observed relatively small effects on
reordering quality in response of parsing errors”. We vi-
sually inspected a sample of the parsing results used in our
experiments and found parsing errors did not have a large
effect on the performance of our head finalization approach.
We consider a major benefit of our approach is that we almost
always use the “head” information from a dependency parse,
which leads to robustness. The performance of LADER is
greatly affected by the quality rather than the amount. So
it is sensitive to the nature of languages involved, and also
to their word segmentation schemes because they affect the
quality of word alignment used to train LADER.

Among the various segmentation schemes for Myanmar,
we believe the syl strategy has a tendency to over-split sen-
tences and mmx may lead to some long expressions without
necessary splits as illustrated in Figure 4. It can be seen that
the data segmented using mmx has fewer tokens and rela-
tively longer words. It was expected that the the evaluation
scores in Table 7 – 9 would be lower than those in Table 4 –
6. Conversely, if the translation is done on mmx and evalu-
ated by syl, as shown in Table 10 – 12, we find the results
are better than those in Table 4 – 6. The experimental results
show that the mmx strategy is a better segmentation strategy
than syl. Although mmx introduces long expressions, it can
offer more meaningful units in word alignment and transla-
tion, which lead to a better performance. However, a more
useful standard morpheme analysis system should hopefully
be built for Myanmar in the future.

We show translation examples of zh-my, en-my and
fr-my. The examples are selected from the best results of
mmx and illustrated using syl segmentation. It can be seen
that the head finalization has a rigidity with respect to the
syntactic structure. For example, the objects of verbs are
strictly arranged in front positions in head finalization (ac-
tually, untouched), such as the Chinese “我 ” in Fig. 5, the
English “i” in Fig. 6, and the French “j’ ” in Fig. 7. While
in the pre-ordering from LADER, those words are scattered.
For example, in the first example of Fig. 6 and in Fig. 7, the
“i” and “j’ ” are moved to the end of the sentences. This is
because LADER does not have information on the syntactic
structure of a sentence. In this example, LADER moves the
phrases “i want” and ”j’ ai” as whole units to the sentence
ends, and makes further local swapping within the phrases.
The second example of Fig. 6 shows the simplicity of our
head finalization approach; in this example, only the verb
“bring” is moved to the end of the sentence.

6. Conclusion and Future Work
In this paper, we conducted pre-ordering experiments on
Chinese-, English-, French-to-Myanmar translation. We
found that a simple dependency-based head finalization pre-
ordering strategy can consistently and efficiently improve a
baseline SMT system. The proposed head finalization ap-
proach does not require parallel training data, and only de-
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Baseline Input 对不起 ， 请 告诉 我 这个 怎么 用 ？ (sorry , please tell me this how use ?) 

LADER Input 这个 对不起 ， 请 告诉 我 怎么 用 ？ (this sorry , please tell me how use ?) 

Head Final. Input 对不起 ， 我 这个 怎么 用 告诉 请 ？ (sorry , me this how use tell please ?) 

Baseline Output ေ ဆိေ် တောက် Ć တကျး ဇူး ပပ ပပီး ဒီ ဟာ ကုိ ဘယ် ေုိ သံုး ရ မ ေဲ ။ 

LADER Output တကျး ဇူး ပပ ပပီး ေ ဆိေ် တောက် ။ တကျး ဇူး ပပ ပပီး ဒီ ဟာ ကုိ ဘယ် ေုိ သံုး ရ မ ေဲ ။ 

Head Final. Output ေ ဆိေ် တောက် Ć ဒါ ကုိ ဘယ် ေုိ သံုး ရ မ ေဲ ဆုိ ော တ ပာ  ပ တပး နုိင် မ ေား ။ 

Reference ေ ဆိေ် တောက် Ć ဒါ ကုိ ဘယ် ေုိ သံုး ရ ေယ် ဆုိ ော  ပ တပး ပါ ေား ။ 

Figure 5: Chinese-to-Myanmar translation example. (For the input rows, word-by-word English literal translations are annotated
in gray. An unconstrained translation of the original Chinese sentence is “Excuse me, could you tell me how this works?” )

Baseline Input i want to send this parcel to japan . please bring me some ice . 

LADER Input this parcel to japan send to want i . ice some me please bring . 

Head Final. Input i this parcel japan to send to want . please me some ice bring . 

Baseline Output ဒီ အ ထုေ် ကုိ ဂျ ပန် ကုိ ပ့ုိ ချင် ေ့ုိ ပါ ။ တရ ခဲ ကုိ နည်း နည်း တောက် ယူ ော တပး ပါ ။ 

LADER Output ဒီ ပါ ဆယ် ဂျ ပန် ကုိ ပ့ုိ ချင် ပါ ေယ် ။ တရ ခဲ နည်း နည်း ယူ ော တပး ပါ တနာ် ။ 

Head Final. Output ဒီ ပါ ဆယ် ဂျ ပန် ကုိ ပ့ုိ ချင် ေ့ုိ ပါ ။ တရ ခဲ ယူ ော တပး ပါ ။ 

Reference ဒီ ပါ ဆယ် ဂျ ပန် ကုိ ပ့ုိ ချင် ေ့ုိ ပါ ။ တရ ခဲ ကုိ ယူ ော တပး ပါ ။ 

Figure 6: English-to-Myanmar translation examples.

Baseline Input j' ai oublié mon billet d' avion . (I have forgotten my ticket of aeroplane .) 

LADER Input avion d' billet mon oublié ai j' . (aeroplane of ticket my forgetten have I .) 

Head Final. Input j' mon avion d' billet oublié ai . (I my aeroplane of ticket forgetten have .) 

Baseline Output ကွန် တော့် ရဲ ့တေ ယာဉ် ေက် မှေ် တမ့ ကျန် ခ့ဲ ေယ် ။ 

LADER Output တေ ယာဉ် ေက် မှေ် တမ့ ကျန် ခ့ဲ ေယ် ။ 

Head Final. Output တေ ယာဉ် ေက် မှေ် တမ့ ကျန် ခ့ဲ ပါ ေယ် ။ 

Reference တေ ယာဉ် ေက် မှေ် တမ့ ကျန် ခ့ဲ ပါ ေယ် ။ 

Figure 7: French-to-Myanmar translation example. (For the input rows, word-by-word English literal translations are annotated
in gray. An unconstrained translation of the original French sentence is “I forgot my airline ticket.” )

pends on a source-side dependency parser, which allowed
it to attain higher performance than an unsupervised base-
line in our experiment. The simplicity and efficiency of the
proposed head finalization approach should allow it to find
practical application on large scale data sets.

In further work, we plan to expand the parallel data and
conduct experiments on larger corpora. We are also devel-
oping a morpheme analyzer and parsers for Myanmar to fa-
cilitate the transference of more techniques of Japanese and
Korean language processing to Myanmar language process-
ing.
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for statistical machine translation,” in Proc. of ACL, 2005, pp.
531–540.

[10] D. Genzel, “Automatically learning source-side reordering
rules for large scale machine translation.” in Proc. of COL-
ING, 2010, pp. 376–384.

[11] G. Kikui, E. Sumita, T. Takezawa, and S. Yamamoto, “Creat-
ing corpora for speech-to-speech translation.” in Proc. of EU-
ROSPEECH, 2003, pp. 381–384.

[12] Y. K. Thu, A. Finch, Y. Sagisaka, and E. Sumita, “A study of
Myanmar word segmentation schemes for statistical machine
translation,” in Proc. of ICCA, 2013, pp. 167–179.

[13] R. Levy and C. Manning, “Is it harder to parse Chinese, or the
Chinese treebank?” in Proc. of ACL, 2003, pp. 439–446.

[14] R. Socher, J. Bauer, C. D. Manning, and A. Y. Ng, “Parsing
with compositional vector grammars.” in Proc. of ACL, 2013,
pp. 455–465.

[15] K. Toutanova, D. Klein, C. D. Manning, and Y. Singer,
“Feature-rich part-of-speech tagging with a cyclic dependency
network.” in Proc. of HLT-NAACL, 2003, pp. 173–180.
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statistique du français.” in Proc. of TALN, 2008.

[17] J. Nivre, J. Hall, J. Nilsson, A. Chanev, G. Eryigit, S. Kübler,
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A. Head Finalization for Chinese
We use the Standford Chinese dependency parser.

• The conj arc is used to identify coordination.

• The punct arc is used to identify punctuation marks.

• The asp, assm, ba, cop, cpm, dvpm, mmod arcs are
taken as auxiliary verbs or post-positioned particles.
They are always arranged after their heads.

• The neg arc is used to identify the negation.

• We clean up parsing errors around several common
Chinese function words, to insure:

– sentence final particles “啊 ”, “吧 ”, “的 ”,
“了 ”, “吗 ”, “呢 ”, “呀 ” are always after their
head words;

– determiners “这 ”, “那 ”, “哪 ” are always be-
fore their head words.

• The article deletion process is not applied in Chinese.

B. Head Finalization for English
We use the Standford English dependency parser.

• The conj, cc arcs are used to identify coordination.

• The punct arc is used to identify punctuation marks.

• The aux, auxpass, cop arcs are taken as auxiliary
verbs. They are always arranged after their heads.

• The mark arc and “when”, “where” with advmod arc
are always arranged after their heads.

• The neg arc is used to identify the negation.

• The “there be” of an existential clause is kept together.

• For the process of article deletion, we delete “a”, “an”,
“the”.

C. Head Finalization for French
We use Malt French parser with the CC tag set.

• The *coord* arcs are used to identify coordination.

• The ponct arc is used to identify punctuation marks.

• The *aux* arcs are taken as auxiliary verbs. They are
always arranged after their heads.

• The “ne”, “n’ ” with mod arc is used to identify the
negation.

• The “il y a” and “y a-t-il” of an existential clause is
kept together.

• For the process of article deletion, we delete “le”, “la”,
“l’ ”, “les”, “un”, “une”.

191

Proceedings of the 11th International Workshop on Spoken Language Translation
Lake Tahoe, December 4th and 5th, 2014



Discriminative Adaptation of Continuous Space Translation Models

Quoc-Khanh Do1,2, Alexandre Allauzen1,2, François Yvon1

LIMSI-CNRS1 and Univ. Paris-Sud2, rue John von Neumann, F 91 403 Orsay
{dokhanh,allauzen,yvon}@limsi.fr

Abstract
In this paper we explore various adaptation techniques for
continuous space translation models (CSTMs). We consider
the following practical situation: given a large scale, state-
of-the-art SMT system containing a CSTM, the task is to
adapt the CSTM to a new domain using a (relatively) small
in-domain parallel corpus. Our method relies on the defini-
tion of a new discriminative loss function for the CSTM that
borrows from both the max-margin and pair-wise ranking ap-
proaches. In our experiments, the baseline out-of-domain
SMT system is initially trained for the WMT News transla-
tion task, and the CSTM is to be adapted to the lecture trans-
lation task as defined by IWSLT evaluation campaign. Ex-
perimental results show that an improvement of 1.5 BLEU
points can be achieved with the proposed adaptation method.

1. Introduction
Domain adaptation (DA) is an important and active research
topic in Statistical Natural Language Processing [1, 2]. In a
nutshell, domain adaptation aims to mitigate the well-known
problem of covariate shift which stems from statistical dis-
tribution differences between train and test samples. This
often happens in NLP, especially when train and test docu-
ments correspond to different genres, registers or domains.
Domain adaptation is often expressed in terms of finding an
optimal combination of a small in-domain dataset with large
amounts of out-of-domain data.

To avoid the dilution of domain-specific knowledge,
most approaches consider various kinds of data weighting
schemes in order to balance the importance of in-domain vs
out-of-domain data. In such adaptation scenarios, the NLP
component needs to be retrained, entirely or partly, to inte-
grate these new samples, which can be very time consum-
ing or even unrealistic in many situations. This is especially
problematic for SMT systems, that are typically made of sev-
eral layers of statistical models. DA for SMT has therefore
received considerable attention in the recent years (for in-
stance [3, 4, 5, 6]). This situation is compounded when, as we
do here, SMT systems rely on Continuous Space Language
Models (CSLMs) or Translation Models (CSTMs), which
have recently gained a lot of popularity [7, 8, 9, 10, 11, 12].

As demonstrated for many NLP tasks [13], such as lan-
guage modelling [7, 14, 15, 16], syntactic parsing [17] and
machine translation [8, 9, 18, 19], CSLMs and CSTMs can

remedy to two well-know issues of statistical modelling for
linguistic data. Typical statistical models use discrete ran-
dom variables to represent the realization of words, phrases
or phrase pairs. The corresponding parameter estimates are
based on relative frequencies and are unreliable for rare
events. Furthermore, the resulting representations ignore
morphological, syntactic and semantic relationships that ex-
ist among linguistic units. This lack of structure hinders the
generalization power of statistical models and reduces their
ability to adapt to other domains. By contrast, continuous
models manipulate numerical representations of linguistic
units that are automatically trained from large corpora and
that implicitly capture some similarity relationships, thereby
introducing some smoothing in the probability estimates.

The adaptation of Continuous Models for SMT has thus
far received little attention. We study here the following
practical situation: a large scale, state-of-the-art SMT sys-
tem is available and needs to be ported to a new domain,
using a small in-domain parallel corpus. In this setting, our
main contribution is the definition and evaluation of new loss
functions, that aim at discriminatively adapting the CSTMs
to the new data. These objective functions derive from both
the max-margin [20, 21] and pair-wise ranking [22, 23] ap-
proaches. In our experiments, the baseline, out-of-domain
system is preliminarily trained for the News translation task,
and the CSTMs must be adapted to the lecture translation
task as defined in recent IWSLT evaluation campaigns [24].

The rest of the paper is organized as follows. Section 2
briefly describes the model structure that will be used in our
experiments. Section 3 proposes new discriminative loss
functions on N -best lists, along with the corresponding adap-
tation algorithms. The next section gives details about our
experimental conditions and analyzes our main results. We
finally provide a short review of similar works both on Dis-
criminative Machine Translation and on Continuous Space
Translation Models, before concluding with some perspec-
tives for future work.

2. Continuous space translation models

This section provides an overview of the CSTM used in our
baseline system and subsequently adapted. This model was
introduced and fully described in [9].
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Figure 1: Extract of a French-English sentence pair segmented in bilingual units. The original (org) French sentence appears at
the top of the figure, just above the reordered source s and target t. The pair (s, t) decomposes into a sequence of L bilingual
units (tuples) u1, ..., uL. Each tuple ui contains a source and a target phrase: si and ti.

2.1. The n-gram translation model

n-gram translation models (TMs) rely on a specific decom-
position of the joint probability P (s, t), where s is a se-
quence of I reordered source words (s1, ..., sI )1 and t con-
tains J target words (t1, ..., tJ ). This sentence pair is as-
sumed to be decomposed into a sequence of L bilingual
units called tuples defining a joint segmentation: (s, t) =
(u1, ..., uL). In this framework, the basic translation units
are tuples, which are the analogous of phrase pairs, and rep-
resent a matching u = (s, t) between a source s and a target
t phrase (Figure 1). Using the n-gram assumption, the joint
probability of a synchronized and segmented sentence pair is:

P (s, t) =

L∏

i=1

P (ui|ui−1
i−n+1), (1)

where ui−1
i−n+1 denotes the tuple sequence ui−n+1, . . . , ui−1.

The complete model for a sentence pair thus involves latent
variables that specify the reordering applied to the source
sentence, as well as its segmentation into translation units.
These latent variables define the derivation of the source sen-
tence that generates the target sentence. They are omitted
for the sake of clarity. During the training step, the segmen-
tation is a by-product of source reordering, and ultimately
derives from initial word and phrase alignments (see [25, 26]
for details). During the inference step, the SMT decoder will
compute and output the best derivation.

In this model, the elementary units are bilingual pairs,
which means that the underlying vocabulary, hence the num-
ber of parameters, can be quite large, even for small trans-
lation tasks. Due to data sparsity issues, such models face
severe estimation problems. Equation (1) can therefore be
factored by decomposing tuples in two (source and target)
parts and in two equivalent ways:

P (ui|ui−1
i−n+1)

= P (ti|sii−n+1, t
i−1
i−n+1)P (si|si−1

i−n+1, t
i−1
i−n+1)

= P (si|tii−n+1, t
i−1
i−n+1)P (ti|si−1

i−n+1, t
i−1
i−n+1)

(2)

1In the context of the n-gram translation model, (s, t) thus denotes an
aligned sentence pair, where the source words are reordered.

Each decomposition involves two bilingual conditional dis-
tributions that can also be decomposed at the level of words,
using again the n-gram assumption.

2.2. Continuous translation modeling with SOUL

The n-gram distributions described in Section 2.1 are defined
over potentially large vocabularies. As proposed in [9], these
distributions can be estimated using the SOUL model intro-
duced in [27]. Following [28], the SOUL model combines
the feed-forward neural network approach for n-gram mod-
els [7] with a class-based prediction [29]. Structuring the out-
put layer with word-class information makes the estimation
of distributions over the entire vocabulary computationally
feasible. Neural network architectures are also interesting as
they can easily handle larger contexts than typical n-gram
models. In the SOUL architecture, enlarging the context
mainly consists in increasing the size of the projection layer,
which corresponds to a simple look-up operation. Increasing
the context length at the input layer thus causes only a linear
growth in complexity in the worst case [14].

2.3. Training and initialization issues

The word-based translation model described in section 2.1
involves two different languages and thus two different vo-
cabularies: the predicted unit is a target or source word,
whereas the context is made of both source and target words.
As proposed in [9], the SOUL architecture is modified to
make up for mixed contexts by considering two different
sets of word embeddings, one for each language. Training
this kind of model can be achieved by maximizing the log-
likelihood on some parallel corpus. Following [9], this opti-
mization is performed by stochastic back-propagation, while
the derivation (source reordering and segmentation in trans-
lation units) are derived by the usual procedure (see [30]).

However, for multi-layered neural networks, the non-
convexity of the objective function implies that the param-
eter initialization can highly impact the training process in
terms of its convergence speed and of its performance. In
the bilingual context of translation modeling, two monolin-
gual language models can first be estimated for initialization
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purpose2. In a domain adaptation context, we assume that
an existing CSTM –trained on the out-of-domain data– al-
ready exists. This model is thus well suited to bootstrap the
adaptation process.

3. Objective functions for adaptation
In most previous works (eg. [8, 9]), CSTMs are estimated by
maximizing the regularized conditional log-likelihood (CLL)
on parallel training corpora. This estimation procedure is
used to train a baseline CSTM on the out-of-domain cor-
pus, producing a baseline model that will serve as an initial
point for domain adaptation. Given a small in-domain par-
allel corpus, the same training procedure can also be used.
A straightforward adaptation algorithm consists in running
a few epochs of the standard back-propagation algorithm on
the in-domain data to maximize the conditional likelihood
using, as initial parameters, the out-of-domain model.

There is however only a loose relationship between the
CLL criterion and the final translation quality. The CSTM is
usually integrated in the translation process through a rerank-
ing step, the goal of which is to reorder a reduced set of
candidate translations, called N -best list. Therefore, to bet-
ter take advantage of the small amount of in-domain data,
we propose to explore alternative objective functions that are
more directly related to the translation quality (as reflected by
the BLEU score) after reranking. We first present the general
learning algorithm, then the various objective functions.

3.1. Rescoring N -best lists with CSTMs

Due to the high computational cost of normalizing the output
layer, continuous models are in most cases3 introduced in a
post-processing step called N -best reranking.

We thus assume that for each source sentence s, the de-
coder can generate an N -best list {h1,h2, ...,hN} of N top
translation candidates. Each hypothesis hi = (ti,ai) is as-
sociated with the decoder score Fλ(s,h) computed as:

Fλ(s,h) =
K∑

k=1

λkfk(s,h), (3)

where K feature functions (fk) are weighted by a set of co-
efficients (λk). The n-gram approach differs from other ap-
proaches by the hidden variables associated to derivations,
such as the source word reordering and the segmentation of
the resulting parallel sentence. The basic feature functions
used in this study are very similar to those used by standard
phrase-based SMT systems (see [30] for instance).

When reranking with a continuous space model, Fλ(.)
is augmented to also include an additional feature denoted
fθ(s,h). As explained in Section 2.2, fθ(s,h) typically

2The following parameters can be initialized given a source and target
language monolingual models: the source and target word embeddings re-
spectively, and the structured output layer’s structure.

3See however [31, 32, 19] for early attempts to integrate Neural Network
Translation Models within the decoder.

Algorithm 1 Joint optimization procedure for θ and λ

1: Initialize θ and λ
2: for each iteration do
3: for M mini-batches do ⊲ λ is fixed
4: Compute the sub-gradient of L(θ, s) for all s in

the mini-batch
5: Update θ
6: end for
7: Update λ using dev set ⊲ θ is fixed
8: end for

corresponds to the negated log-probability of the derivation:
fθ(s,h) = − logPθ(s,h), where θ is the vector containing
the CSTM’s free parameters. The scoring function used in
reranking is then:

Gλ,θ(s,h) = Fλ(s,h) + λK+1fθ(s,h) (4)

This scoring function depends on the CSTM’s parame-
ters θ, as well as on the coefficients λ of the scoring func-
tion. In the approach proposed here, optimizing the rerank-
ing step will thus requires to alternatively tune the vector of
coefficients λ and to adapt the CSTM’s weight vector θ: the
former procedure uses the development data, while the latter
will use the in-domain parallel corpus.

The corresponding proposed optimization procedure
splits the in-domain set in mini-batches of a fixed size (typ-
ically 128 subsequent sentence pairs). As sketched in Algo-
rithm 1, each mini-batch is used to update the parameters θ
of the CSTM while keeping λ fixed. The vector λ is updated
every M mini-batches.

In our study, tuning λ is performed using standard tools
(here, the K-Best Mira algorithm described in [21] as imple-
mented in MOSES 4). The training of CSTMs (with fixed λ)
is more interesting and we compare two discriminative ob-
jective functions, which aim at better taking the translation
quality into account. These two objectives are in turn com-
pared to the conventional maximization of the conditional
likelihood criterion on parallel data.

3.2. A max-margin approach

As explained above, each hypothesis hi produced by the
decoder is scored according to (4). Its quality can also be
evaluated by the sentence-level approximation of the BLEU
score sBLEU(hi). Let h∗ denote the hypothesis with
the best sentence BLEU score. A max-margin loss func-
tion [33, 34, 20] for estimating θ can then be formulated as
follows:

Lmm(θ, s) = −Gλ,θ(s,h
∗)

+ max
1≤j≤N

(Gλ,θ(s,hj) + costα(hj)) , (5)

where costα(hj) = α
(
sBLEU(h∗) − sBLEU(hj)

)
. The

parameter α mitigates the contribution of the cost function
4http://www.statmt.org/moses/
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to the objective function. When alpha > 0, the objective
defined in (5) is a general max-margin training criterion; tak-
ing α = 0 corresponds to the structured perceptron loss [35].
This objective function aims to discriminatively learn to give
the highest model score to the hypothesis h∗ having the best
sentence level BLEU. Moreover, the margin term enforces
the scoring difference between h∗ and the rest of the N -best
list to be greater than the margin.

However, a source sentence can have, among the N -best
list, several good translations that differ only slightly from
the best hypothesis. The max-margin objective function de-
fined above nevertheless considers that all hypotheses, except
the best one, are wrong. The ranking-based approach defined
below tries to correct this weakness.

3.3. Pairwise ranking

Inspired by [22], we define another objective function that
aims to learn the ranking of a set of hypotheses with respect
to their BLEU scores. Assuming that ri denotes the rank of
the hypothesis hi when the N -best list is reordered according
to the sentence-level BLEU, this objective is defined as:

Lpro(θ, s) =
∑

1≤i,k≤N

I{ri+δ≤rk,Gλ,θ(s,hi)<Gλ,θ(s,hk)}

(−Gλ,θ(s,hi) +Gλ,θ(s,hk)) . (6)

Note that this loss function only involves a subset of the
N(N − 1)/2 pairs of hypotheses, since two hypotheses are
included in the sum only if they are sufficiently apart in
terms of their ranks: formally, the absolute difference of
ranks should be greater than a predefined threshold δ. As
in PRO [22], the ranking problem is thus reduced to a bi-
nary classification task taking candidate translation pairs as
inputs. A major difference to PRO though, is the fact that
we use this loss function to train the CSTM’s parameters θ,
rather than the feature weights λ.

This ranking criterion can finally be generalized again
with the notion of margin: for a pair of hypotheses (hi,hk)
such as ri + δ < rk, the scoring difference Gλ,θ(s,hi) −
Gλ,θ(s,hk) should exceed a positive margin. As in sec-
tion 3.2, the margin is based on the sentence-level BLEU
score via the use of the cost function costα. Let us define the
set of all critical pairs of hypotheses as:

Cα
δ ={(i, k) : 1 ≤ i, k ≤ N, ri + δ ≤ rk, (7)

Gλ,θ(s,hi)−Gλ,θ(s,hk) < costα(hk)− costα(hi)}.

The objective function that combines both the pairwise rank-
ing and max-margin criterion is defined as follows:

Lpro−mm(θ, s) =
∑

(i,k)∈Cα
δ

costα(hk)− costα(hi)

−Gλ,θ(s,hi) +Gλ,θ(s,hk). (8)

Taking α = 0, this function is equivalent to the pairwise
ranking criterion (6).

4. Experiments

We now turn to an experimental comparison of the adaptation
methods described in Section 3. In our experimental frame-
work, the lecture translation task defines the targeted (or in)
domain, while the baseline system corresponds to a state-of-
the-art SMT system, intensively trained for the News trans-
lation task, as defined by the WMT evaluation. The goal is
therefore to quickly and efficiently adapt this out-of-domain
system by only updating the CSTM.

4.1. Task and corpora

The task considered here is derived from the text trans-
lation track of IWSLT 2011 from English to French (the
TED Talks task [24]), where a (in-domain) training dataset
containing 107, 058 aligned sentence pairs was made avail-
able. As explained above, this corpus only serves to adapt the
continuous space translation models, i.e to adapt the param-
eters θ. The baseline and out-of-domain system is trained
in the condition of the shared translation task of WMT 2013
evaluation campaign.5 This system includes CSTMs that will
be used as starting points for adaptation.

The official development and test sets respectively con-
tain 934 and 1, 664 sentence pairs. Following [9], these sets
are swapped, the tuning of the feature weights λ is carried
out on 1, 664 sentences of the latter, while the final test is on
934 sentences of the former. Translations are evaluated us-
ing the BLEU score [36]. For a fair comparison, all BLEU
scores reported are obtained after a tuning phase on the dev
set, including the baseline system. For Algorithm 1, (θ,λ)
are selected by maximizing the BLEU score on the dev set
(line 7).

4.2. Baseline system and models

The n-gram-based system used here is based on an open
source implementation6 of the bilingual n-gram approach to
Statistical Machine Translation [37]. In a nutshell, the trans-
lation model is implemented as a stochastic finite-state trans-
ducer trained using an n-gram model of (source, target) pairs
as described in section 2.1. Training this model requires to
reorder source sentences so as to match the target word order.
This is performed by a non-deterministic finite-state reorder-
ing model, which uses part-of-speech information generated
by the TreeTagger to generalize reordering patterns beyond
lexical regularities.

In addition to the TM, fourteen feature functions are in-
cluded that are similar to the standard phrase-based system:
target-language model; four lexicon models; six lexicalized
reordering models; a distance-based distortion model; and fi-
nally a word-bonus model and a tuple-bonus model. A more
detailed description is in [30].

5http://www.statmt.org/wmt13/
6perso.limsi.fr/Individu/jmcrego/bincoder
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Figure 2: Evolution of BLEU scores on the dev set using
three discriminative criteria described in (5), (6) and (8).
Vector λ is updated every 200 sub-iterations (mini-batches).
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Figure 3: Evolution of BLEU scores on the dev set with
different values of α. Lpro−mm is used in all cases.

4.3. Experimental results

The baseline, out-of-domain, system is used to generate the
300-best list for the in-domain corpus. It takes approxima-
tively an half an hour if this process is parallelized by divid-
ing the corpus in about 50 parts of 20, 000 sentences. δ is set
to 250 (equations (6) and (7)) in all our experiments with the
pairwise ranking criterion.

As reflected in equation (2), 4 translation models can
be defined by various factorizations of P (s, t). For the
sake of clarity, we focus our study on models estimating
P (ti|sii−n+1, t

i−1
i−n+1) and P (ti|si−1

i−n+1, t
i−1
i−n+1). We first

compare the different objective functions defined in Section 3
and examine the impact of the margin on the former model.
We then choose the best configuration to adapt the latter.
Similar trends were observed with other CSTMs.

Figure 2 compares the three discriminative criteria re-
spectively defined by (5), (6) and (8) in terms of BLEU
scores on the dev set when adapting P (ti|sii−n+1, t

i−1
i−n+1).

System dev test
Baseline systems (out-of-domain)

n-code 33.9 27.6
n-code + CSTM WMT 34.4 28.5

Adapted systems
n-code + CSTM CLL adapted 35.0 29.1
n-code + CSTM Lmm adapted α = 100 35.1 29.4
n-code + CSTM Lpro adapted 35.4 29.5
n-code + CSTM Lpro−mm adapted α = 100 35.8 29.6

Table 1: BLEU scores obtained for different adapta-
tion schemes of the CSTM for P (ti|sii−n+1, t

i−1
i−n+1) with

WMT baselines: maximum conditional likelihood (CLL)
vs discriminative adaptation. Log-linear coefficients of the
baseline systems are re-tuned using the in-domain dev set.

Table 1 gives BLEU scores on both dev and test sets. Ac-
cording to these results, the pairwise ranking criterion, with
or without max-margin((6) and (8)) clearly outperforms the
max-margin approach (5) on the dev set. Further analyses
(not detailed here) on each criterion’s behaviour on the train-
ing set suggest that continuous space models quickly overfit
the training data when adapted with the max-margin crite-
rion. This result may outline the benefit of using criteria
based on multiples hypotheses from different parts of the
N -best list, rather than only on the best hypothesis and the
most critical one as does the max-margin loss. Because of
the superiority of the pairwise ranking approach, the rest of
this section focuses on this criterion.

To assess the impact of the margin in Lpro−mm, we plot
on Figure 3 the evolution of the BLEU score on the dev set
as a function of α. When α = 0, the objective function only
considers the pairwise ranking criterion Lpro. By increasing
α, we observe an improvement of 0.4 BLEU point, while
beyond α = 100, the performance starts to drop.

The results of adapting P (ti|sii−n+1, t
i−1
i−n+1) are in Ta-

ble 1. The upper part reports the baseline BLEU scores.
Initial results were obtained with the out-of-domain one-
pass system, and a 0.9 BLEU point improvement was ob-
tained when reranking its output with the out-of-domain
CSTM. The lower part of Table 1 summarizes the results
obtained with various adaptation methods: the conditional
likelihood (CLL) adaptation technique yields an additional
increase of 0.6 BLEU point, which is nearly doubled when
using the discriminative objective function Lpro−mm to per-
form adaptation. As showed in the middle part of Table 2,
similar improvements are obtained with the adaptation of
P (ti|si−1

i−n+1, t
i−1
i−n+1).

Finally, the lower part of Table 2 compares the perfor-
mance obtained by our discriminative adaptation method to
the one published in [9] for the same experimental setup. In
our experiment (the last line), in-domain data are only used
in two phases: the retuning of feature weights λ; and the
separate discriminative adaptation of two CSTMs. In [9], the
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System dev test
Baseline systems (out-of-domain)

n-code 33.9 27.6
n-code + CSTM WMT 34.6 28.2

Adapted systems
n-code + CSTM CLL adapted 35.1 28.7
n-code + CSTM Lpro−mm adapted α = 100 35.3 29.4

Model combination
n-code (+TED) + all CSTMs CLL adapted [9] 36 29.7
n-code + all WMT CSTMs + 2 CSTMs
Lpro−mm

36.4 29.9

Table 2: BLEU scores obtained for different adaptation
schemes of the CSTM for P (ti|si−1

i−n+1, t
i−1
i−n+1) in the mid-

dle part, and with model combination in the lower part. The
notation n-code (+TED) emphasizes that for this system the
baseline SMT system is re-trained with out-of-domain and
in-domain data, while in all other cases the baseline system
only uses out-of-domain data.

SMT system is entirely re-trained from scratch to integrate
in-domain data (from word alignments to the large scale tar-
get language model), and all four CSTMs defined by (2) are
adapted using the CLL criterion. This experiment shows that
we can achieve slightly better performance by only adapting
two CSTMs with the proposed objective function.

5. Related work
Most recent works in domain adaptation for SMT focuses
on the modification of the sufficient statistics required by
conventional discrete models [3, 4, 38], or on data se-
lection [5, 6]. Our work owes much to recent contribu-
tions in discriminative training and tuning of SMT systems.
While perceptron-based learning has been first introduced
in [39, 40], margin-based algorithms such as MIRA [20, 21]
are nowadays considered as more efficient to train Feature-
Rich Translation systems. This property is especially rele-
vant in our case, since we intend to learn a large set of pa-
rameters (θ). Another trend considers the optimization prob-
lem as ranking [41, 39, 22, 23]. Note that the ranking task
corresponds to the integration of the CSTM that is actually
used for N -best reranking. In this work, the proposed ob-
jective functions borrow from these two lines of research to
both adapt the CSTM (θ) and tune its contribution (λ) to the
whole SMT system.

To the best of our knowledge, the most similar work on
discriminative training or adaptation of neural network mod-
els is [12]. In this article, the authors propose to estimate the
parameters of a neural network towards the expected BLEU
score, while tuning λ by standard tools. Algorithm 1 is
very similar to the optimization algorithm they describe, ex-
cept that in our case, the feature weights λ are regularly up-
dated for a better and tighter integration of the CSTM into
the SMT system. Moreover, their proposed model only con-

siders phrase pairs in isolation, while we use a probabilistic
model of the joint distribution of sentence pairs. Expected
BLEU training was also applied to recurrent neural network
language model in [42].

In [13], the authors also introduce a ranking-type objec-
tive function that only aims to estimate word embeddings in
a multitask-learning framework. Furthermore, [17] inves-
tigates the use of a large-margin criterion to train a recur-
sive neural network for syntactic parsing. Interestingly, their
model is also used to rerank N -best derivations generated by
a conventional probabilistic context-free grammar. However,
as showed by experimental results, the max-margin criterion
alone is less adapted to machine translation. One explanation
is that the N -best lists generated by the SMT system are not
sufficiently diverse.

6. Conclusions

This paper has proposed and evaluated the use of discrimi-
native criteria to adapt continuous space translation models.
Instead of using a standard maximum likelihood method, the
newly proposed algorithm discriminatively contrasts good
and bad hypotheses from an N -best list produced by the
baseline system into which the CSTM will be incorporated.
A new adaptation method has been tested, consisting in
jointly optimizing parameters from the neural network and
from the SMT system so that the algorithm directly improves
the system’s overall quality. BLEU-based margins have also
been included into these new loss functions and are proved
to be useful. Our experiments consist in adapting out-of-
domain CSTMs using a small quantity of in-domain parallel
data, while keeping intact the out-of-domain baseline sys-
tem. Our conclusions are two-fold. Firstly, we prove em-
pirically the effectiveness of using discriminative criteria to
adapt CSTMs, compared to the traditional maximum like-
lihood method. Secondly, our comparison shows that the
pairwise ranking criterion is more suitable to Discriminative
Reranking task in SMT than the max-margin approach, and
that combining both criterion can deliver additional gains. In
general, this work confirms the effective use of neural net-
works in Domain Adaptation for SMT systems.

For future work, we plan to combine our framework with
other objective functions on N -best lists, such as expected
BLEU [43]. We will also try an intensified use of the pro-
posed algorithm by iteratively adding multiple feature func-
tions into the SMT system; each model is trained using base-
line system’s N -best lists rescored with previously added
models, in the hope that each model will capture comple-
mentary information and correct errors of the previous pass.
Moreover, even though this work focuses on probabilistic
n-gram translation models, our framework could be applied
to any model structure [44, 18, 11] giving a score to each
translation hypothesis.

197

Proceedings of the 11th International Workshop on Spoken Language Translation
Lake Tahoe, December 4th and 5th, 2014



7. References
[1] H. Daume III and D. Marcu, “Domain adaptation for

statistical classifiers,” Journal of Artificial Intelligence
Research, vol. 26, pp. 101–126, 2006.

[2] J. Blitzer, “Domain adaptation of natural language
processing systems,” Ph.D. dissertation, University of
Pennsylvania, 2008.

[3] G. Foster and R. Kuhn, “Mixture-model adaptation for
SMT,” in Proceedings of the Second Workshop on Sta-
tistical Machine Translation, Prague, Czech Republic,
2007, pp. 128–135.

[4] N. Bertoldi and M. Federico, “Domain adaptation for
statistical machine translation with monolingual re-
sources,” in Proceedings of the Fourth Workshop on
Statistical Machine Translation, Athens, Greece, 2009,
pp. 182–189.

[5] A. Axelrod, X. He, and J. Gao, “Domain adaptation via
pseudo in-domain data selection,” in Proceedings of the
Conference on Empirical Methods in Natural Language
Processing (EMNLP), 2011, pp. 355–362.

[6] R. Sennrich, “Perplexity minimization for translation
model domain adaptation in statistical machine transla-
tion,” in Proceedings of the 13th Conference of the Eu-
ropean Chapter of the Association for Computational
Linguistics, 2012, pp. 539–549.

[7] Y. Bengio, R. Ducharme, P. Vincent, and C. Janvin, “A
neural probabilistic language model,” Journal of Ma-
chine Learning Research, vol. 3, pp. 1137–1155, 2003.

[8] H. Schwenk, M. R. Costa-jussa, and J. A. R. Fonollosa,
“Smooth bilingual n-gram translation,” in Proceedings
of the Conference on Empirical Methods in Natural
Language Processing (EMNLP), Prague, Czech Repub-
lic, 2007, pp. 430–438.

[9] H.-S. Le, A. Allauzen, and F. Yvon, “Continuous space
translation models with neural networks,” in Proceed-
ings of the North American Chapter of the Associa-
tion for Computational Linguistics: Human Language
Technologies (NAACL-HLT), Montréal, Canada, 2012,
pp. 39–48.

[10] Y. Hu, M. Auli, Q. Gao, and J. Gao, “Minimum transla-
tion modeling with recurrent neural networks,” in Pro-
ceedings of the 14th Conference of the European Chap-
ter of the Association for Computational Linguistics,
2014, pp. 20–29.

[11] K. Cho, B. van Merrienboer, C. Gulcehre, F. Bougares,
H. Schwenk, and Y. Bengio, “Learning phrase repre-
sentations using RNN encoder-decoder for statistical
machine translation,” arXiv preprint arXiv:1406.1078,
2014.

[12] J. Gao, X. He, W.-t. Yih, and L. Deng, “Learning con-
tinuous phrase representations for translation model-
ing,” in Proc. ACL, 2014.

[13] R. Collobert, J. Weston, L. Bottou, M. Karlen,
K. Kavukcuoglu, and P. Kuksa, “Natural language pro-
cessing (almost) from scratch,” Journal of Machine
Learning Research, vol. 12, pp. 2493–2537, 2011.

[14] H. Schwenk, “Continuous space language models,”
Computer Speech and Language, vol. 21, no. 3, pp.
492–518, July 2007.

[15] T. Mikolov, S. Kombrink, L. Burget, J. Cernocký, and
S. Khudanpur, “Extensions of recurrent neural network
language model,” in Proceedings of ICASSP, 2011, pp.
5528–5531.

[16] H.-S. Le, I. Oparin, A. Allauzen, J.-L. Gauvain, and
F. Yvon, “Structured output layer neural network lan-
guage models for speech recognition,” Audio, Speech,
and Language Processing, IEEE Transactions on,
vol. 21, no. 1, pp. 197–206, 2013.

[17] R. Socher, J. Bauer, C. D. Manning, and N. Andrew Y.,
“Parsing with compositional vector grammars,” in Pro-
ceedings of the Annual Meeting of the Association
for Computational Linguistics (ACL), Sofia, Bulgaria,
2013, pp. 455–465.

[18] N. Kalchbrenner and P. Blunsom, “Recurrent continu-
ous translation models,” in Proceedings of the Confer-
ence on Empirical Methods in Natural Language Pro-
cessing (EMNLP), Seattle, Washington, USA, 2013,
pp. 1700–1709.

[19] J. Devlin, R. Zbib, Z. Huang, T. Lamar, R. Schwartz,
and J. Makhoul, “Fast and robust neural network joint
models for statistical machine translation,” in Proceed-
ings of the 52nd Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
Baltimore, Maryland, 2014, pp. 1370–1380.

[20] T. Watanabe, J. Suzuki, H. Tsukada, and H. Isozaki,
“Online large-margin training for statistical machine
translation,” in Proceedings of the Conference on
Empirical Methods in Natural Language Processing
(EMNLP). Citeseer, 2007.

[21] C. Cherry and G. Foster, “Batch tuning strategies for
statistical machine translation,” in Proceedings of the
North American Chapter of the Association for Com-
putational Linguistics: Human Language Technologies
(NAACL-HLT), June 2012, pp. 427–436.

[22] M. Hopkins and J. May, “Tuning as ranking,” in Pro-
ceedings of the 2011 Conference on Empirical Methods
in Natural Language Processing, Edinburgh, Scotland,
UK., July 2011, pp. 1352–1362.

198

Proceedings of the 11th International Workshop on Spoken Language Translation
Lake Tahoe, December 4th and 5th, 2014



[23] P. Simianer, S. Riezler, and C. Dyer, “Joint feature se-
lection in distributed stochastic learning for large-scale
discriminative training in SMT,” in Proceedings of the
Annual Meeting of the Association for Computational
Linguistics (ACL). Association for Computational
Linguistics, 2012, pp. 11–21.

[24] M. Federico, S. Stüker, L. Bentivogli, M. Paul, M. Cet-
tolo, T. Herrmann, J. Niehues, and G. Moretti, “The
IWSLT 2011 evaluation campaign on automatic talk
translation,” in Proceedings of the Eight International
Conference on Language Resources and Evaluation
(LREC’12). European Language Resources Associ-
ation (ELRA), 2012.

[25] J. B. Mariño, R. E. Banchs, J. M. Crego, A. de Gispert,
P. Lambert, J. A. Fonollosa, and M. R. Costa-Jussà, “N-
gram-based machine translation,” Computational Lin-
guistics, vol. 32, no. 4, pp. 527–549, 2006.

[26] J. M. Crego and J. B. Mariño, “Improving statistical
MT by coupling reordering and decoding,” Machine
Translation, vol. 20, no. 3, pp. 199–215, 2006.

[27] H.-S. Le, I. Oparin, A. Allauzen, J.-L. Gauvain, and
F. Yvon, “Structured output layer neural network lan-
guage model,” in Proceedings of ICASSP, 2011, pp.
5524–5527.

[28] A. Mnih and G. E. Hinton, “A scalable hierarchical dis-
tributed language model,” in Advances in Neural Infor-
mation Processing Systems 21, D. Koller, D. Schuur-
mans, Y. Bengio, and L. Bottou, Eds., vol. 21, 2008,
pp. 1081–1088.

[29] P. F. Brown, P. V. deSouza, R. L. Mercer, V. J. D. Pietra,
and J. C. Lai, “Class-based n-gram models of natural
language,” Computational Linguistics, vol. 18, no. 4,
pp. 467–479, 1992.

[30] J. M. Crego, F. Yvon, and J. B. Mariño, “N-code: an
open-source bilingual N-gram SMT toolkit,” Prague
Bulletin of Mathematical Linguistics, vol. 96, pp. 49–
58, 2011.

[31] J. Niehues and A. Waibel, “Continuous space language
models using restricted Boltzmann machines.” in Pro-
ceedings of International Workshop on Spoken Lan-
guage Translation (IWSLT), Hong-Kong, China, 2012,
pp. 164–170.

[32] A. Vaswani, Y. Zhao, V. Fossum, and D. Chiang, “De-
coding with large-scale neural language models im-
proves translation,” in Proceedings of the 2013 Confer-
ence on Empirical Methods in Natural Language Pro-
cessing, Seattle, Washington, USA, 2013, pp. 1387–
1392.

[33] Y. Freund and R. E. Schapire, “Large margin classifica-
tion using the perceptron algorithm,” Machine learning,
vol. 37, no. 3, pp. 277–296, 1999.

[34] R. McDonald, K. Crammer, and F. Pereira, “Online
large-margin training of dependency parsers,” in Pro-
ceedings of the Annual Meeting of the Association for
Computational Linguistics (ACL), 2005, pp. 91–98.

[35] M. Collins, “Discriminative training methods for hid-
den Markov models: theory and experiments with per-
ceptron algorithms,” in Proceedings of the Conference
on Empirical Methods in Natural Language Processing
(EMNLP), 2002, pp. 1–8.

[36] K. Papineni, S. Roukos, T. Ward, and W. J. Zhu, “Bleu:
a method for automatic evaluation of machine transla-
tion,” in in Proceedings of the 40th Annual meeting of
the Association for Computational Linguistics, 2002,
pp. 311–318.

[37] F. Casacuberta and E. Vidal, “Machine translation with
inferred stochastic finite-state transducers,” Computa-
tional Linguistics, vol. 30, no. 3, pp. 205–225, 2004.

[38] B. Chen, R. Kuhn, and G. Foster, “Vector space model
for adaptation in statistical machine translation,” in
Proceedings of the Annual Meeting of the Association
for Computational Linguistics (ACL), 2013, pp. 1285–
1293.

[39] L. Shen and A. K. Joshi, “Ranking and reranking with
perceptron,” Machine Learning, vol. 60, no. 1-3, pp.
73–96, 2005.

[40] P. Liang, A. Bouchard-Côté, D. Klein, and B. Taskar,
“An end-to-end discriminative approach to machine
translation,” in Proceedings of the Annual Meeting of
the Association for Computational Linguistics (ACL).
Association for Computational Linguistics, 2006, pp.
761–768.

[41] L. Shen, A. Sarkar, and F. J. Och, “Discriminative
reranking for machine translation.” in HLT-NAACL,
2004, pp. 177–184.

[42] M. Auli and J. Gao, “Decoder integration and expected
bleu training for recurrent neural network language
models,” in Proceedings of the Annual Meeting of the
Association for Computational Linguistics (ACL), June
2014, pp. 136–142.

[43] J. Gao and X. He, “Training mrf-based phrase transla-
tion models using gradient ascent,” in Proceedings of
NAACL-HLT, 2013, pp. 450–459.

[44] M. Auli, M. Galley, C. Quirk, and G. Zweig, “Joint
language and translation modeling with recurrent neu-
ral networks.” in Proceedings of the Conference on
Empirical Methods in Natural Language Processing
(EMNLP), 2013, pp. 1044–1054.

199

Proceedings of the 11th International Workshop on Spoken Language Translation
Lake Tahoe, December 4th and 5th, 2014



Extracting Translation Pairs from Social Network Content 

 

Matthias Eck, Yury Zemlyanskiy, Joy Zhang, Alex Waibel 

Facebook, Inc. 
eck@fb.com, urikz@fb.com, joyzhang@fb.com, waibel@fb.com 

  

 

Abstract 

We introduce two methods to collect additional training data 

for statistical machine translation systems from public social 

network content. The first method identifies multilingual 

content where the author self-translated their own post to reach 

additional friends, fans or customers. Once identified, we can 

split the post in the language segments and extract translation 

pairs from this content. The second methods considers web 

links (URLs) that users add as part of their post to point the 

reader to a video, article or website. If the same URL is shared 

from different language users, there is a chance they might 

give the same comment in their respective language. We use a 

support vector machine (SVM) as a classifier to identify true 

translations from all candidate pairs. We collected additional 

translation pairs using both methods for the language pairs 

Spanish-English and Portuguese-English. Testing the collected 

data as additional training data for statistical machine 

translations on in-domain test sets resulted in very significant 

improvements of up to 5 BLEU. 

 

1. Introduction 

Current social networking websites like Facebook, 

Twitter and LinkedIn are operating globally. The 

majority of Facebook’s over 1 billion users
1
 are located 

outside of the US and user generated content is 

produced in a wide variety of languages. A globalized 

world also supports friendships across country and 

language barriers and makes news and entertainment 

sources in other languages easily accessible. It is 

Facebook’s stated mission to make the world more open 

and connected and giving people the power to share. 

All of these facts generate the need for translation of 

user content. Efficiency and especially the amount of 

content requested to translate make only automatic 

translation systems feasible. 

 

One of the main challenges in training translation 

systems for social media content is the lack of in-

domain training data. Bilingual corpora are generally 

only available in news or parliament domains, which are 

considerably different from the actual content that needs 

to be translated in social media applications.  

Social media content frequently exhibits slang terms, 

colloquial expressions and other features not common in 

                                                             
1
 Facebook has 1.35B monthly active users as of Sept. 

30
th

, 2014 (Q3 2014 earnings call) 

carefully edited news sources. Spelling errors are also 

very frequent. Social media content in Spanish and 

Portuguese specifically often exhibits a lack of correct 

diacritical marks.  

 

A general approach to overcome any domain-mismatch 

problem is to somehow collect additional in-domain 

training data to augment the out-of-domain training 

data. Many experiments could show that this often 

significantly improves the translation performance.  

 

The source that is used here is the actual social network. 

This paper introduces two different approaches to 

automatically collect parallel training data from social 

network content.  

1.1. Multilingual Posts 

Posting the same content in many languages is an 

approach that many fan pages, but also individual 

persons take to reach different groups of their friends 

and fan bases. Popular fan pages on Facebook have up 

to 100 million and more fans.   As of August 2014 e.g. 

singer Shakira has 102 million fans, soccer club FC 

Barcelona has 72 million fans and soccer player Lionel 

Messi has 69 million. All three are examples of fan 

pages that post most of their updates in English and 

Spanish (also Catalan in FC Barcelona’s case).  Figure 1 

shows an example post by Lionel Messi.  

Figure 1: Multilingual post by Lionel Messi in Spanish 

and English 

Gracias a mis compañeros por elegirme como uno de los 

capitanes del equipo y por la confianza que han depositado 

en mí. Un abrazo. 

 

Thanks to my teammates for picking me as one of the club 

captains and for the confidence they have given me. A hug. 

 

These are just some of the millions of pages on 

Facebook. It is likely that many of them have a 

multilingual group of people following the page. In 

order to serve these people better a large number have 

resorted to multilingual posts. This is even the case for 

pages of smaller, local businesses. Many cities and 

communities in the United States for example have large 

ethnic minority populations, most notably people of 

Hispanic and Asian descent. To reach these potential 
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customers even small businesses often resolve to 

multilingual communication. These pages and users 

want to ensure that all language groups of their fans are 

appropriately informed without relying on machine 

translation, which might not be available on all 

platforms.  

Our first approach determines if an individual post is 

part of this category and contains more than one 

language. Should this be the case the post is split into 

the individual language segments and a classifier 

decides if the parts are indeed translations of each other. 

1.2. URL Sharing 

The second approach exploits the sharing function in 

Facebook allowing users to publicly share and re-share 

links to videos or other websites. Users on Facebook 

and other social networks use this function to point their 

friends and colleagues to interesting content and can 

also comment on it separately. Popular videos, articles 

and websites are shared many times even across 

different language users. 

The assumption here is that two users or pages talking 

about the same content might have very similar 

comments. Therefore we can consider the respective 

posts comparable and we try to find true parallel 

sentences among them. It is for example rather common 

for users to translate movie titles or to quote important 

parts of a news article in their own languages.  

Recently, the official “The Beatles” page shared a 

YouTube video featuring Paul McCartney and wrote a 

description about it. The hotel “Bayres Bohemios” in 

Argentina then decided to share the video with its 

guests. They posted the same link with the same 

description translated to Spanish (see Figure 2)  

Figure 2: Descriptions by the pages “The Beatles” 

and “Bayres Bohemios” for the same URL 

URL: 
https://www.youtube.com/watch?v=pE_1V0phMW8 
 
“The Beatles”: 

Paul is interviewed in this week's NME Magazine, which is on 

the stands from today. 

In the article Paul discusses the recording process and 

working with the four producers who helped put together his 

'New' album; Paul Epworth, Ethan Johns, Giles Martin and 

Mark Ronson. The article reveals the name of two of the 

tracks from the album; 'Alligator' and 'Save Us'. 

 

“Bayres Bohemios”: 

Paul es entrevistado en la revista NME de esta semana, que 

está en las gradas de hoy. 

En el artículo de Pablo discute el proceso de grabación y el 

trabajo con los cuatro productores que ayudaron a armar su 

disco 'New', Paul Epworth, Ethan Johns, Giles Martin y Mark 

Ronson. El artículo revela el nombre de dos de las canciones 

del álbum, ‘Alligator’ y ‘Save Us'. 

The rest of the paper will discuss some related work in 

section 2 and describe our methods in sections 3 and 4. 

Sections 5 and 1 describe the data we were able to 

collect and our experimental results using this data to 

improve machine translation systems for Spanish-

English and Portuguese-English. 

2. Related work 

Collecting corpora for machine translation is a well-

researched problem. Collecting additional parallel 

sentences from Wikipedia and the web itself has been 

extensively studied due to the ease of access. [1]–[5]. 

Most approaches consist of two steps, identifying 

comparable candidate segment pairs based on some 

connection feature between them and a final step to 

classify the found candidate segments into actual 

translation pairs. A classification approach similar to [6] 

is generally applied. The importance of the accuracy of 

the classification is generally closely related on the 

method used to identify candidate segments.  

Closely related to our multi-lingual post approach is the 

work done in [7] to collect additional Chinese-English 

translation pairs from Sina Weibo content. The authors 

continue the work in [8] by using crowdsourcing to 

improve the accuracy of the extracted data. 

 

3. Collecting from multilingual Facebook posts 

For all discussed experiments, only public posts were 

considered and in all instances these public posts were 

stripped of specific user attribution. 

 

We generally consider all (public) Facebook posts as 

candidates for multilingual posts. At creation time of 

every Facebook post, a standard language identification 

system is applied. This helps with News Feed ranking 

and later the ability to show appropriate automatic 

translations. 

Our translation extraction approach is now focusing on 

one source and target language pair at a time and we 

consider all posts that were identified as either target or 

source language in this step. The standard language 

identification does not consider multilingual posts and 

will only assign a single language identifier. 

3.1. Language identification and segmentation 

To identify the segments, we first apply an additional 

language identification step and decide for each unigram 

what its most likely language is.  

Once the basic language identification is applied we also 

check if the ratio of terms identified as either language 

is within a reasonable range, otherwise the post is 

already discarded as unlikely to contain translated 

segments e.g. a post that contains ten English words and 

only one Spanish word. 
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In a second language identification step we apply a 

smoothing on the identified languages to eliminate 

spurious incorrect identifications. This changes the 

identified language of a single word if the neighboring 

words were identified as the other language. This has 

proven helpful for misspellings. Table 1 shows an 

example for a misspelling “mi” in the English segment. 

This is initially incorrectly identified as Spanish and 

then fixed in the smoothing step 

Table 1: Language ID with smoothing 

 Happy  birthday mi brother … 

Language ID en en es en … 

Smoothed en en en en … 

 

Once the language of every word has been identified the 

post is split into the two longest segments, which are 

then classified to determine if they are actually 

translations of each other.  

3.2. Classifying the translation 

All translation classifiers that were applied in this work 

are based on seed lexicons taken from the baseline 

trainings for each translation direction. This especially 

provides word-to-word lexicons to the classifiers. 

 

Experiments have shown that in the multilingual post 

case even simple word-to-word translation heuristics 

provide adequate performance to distinguish candidates 

that are translations from ones that are not. The reason 

seems to be that in this case the users either actually 

provide a translation or they code-switched in their 

posts. In this case the segment contents are not close. An 

example post for this is “quality time con mi 

chiqui”[sic]. In this case there is little danger that the 

two segments could be classified as translations since no 

part of the segments are translations or even 

semantically close. 

 

It is obviously also possible to apply more sophisticated 

segment classification and we describe a detailed model 

in section 4.2 originally developed to classify candidates 

generated from URL shares where candidates can often 

be much closer. The actual experiments reported all 

used the classifier described in section 4.2. 

4. Collecting translations from URL Shares 

An alternative idea to extract translations from 

Facebook posts is to try to find monolingual posts that 

are translations of each other. Of course it is not 

practical or reasonable to compare every post with every 

other post, so the idea is to preselect post pairs that are 

comparable, i.e. discuss the same content. 

Our idea was to look at URL shares. Users in Facebook 

(and other social networks) have the ability to post links 

to web content outside of the social network. Should 

two users link to the same URL they are obviously 

commenting on the same content and it is likely that 

some of those users comments could be translations of 

each other. 

Some examples are translated quotes from a news 

article, translated song, movie or book titles or just 

general comments like “Great game by Germany in the 

world cup”. Given the vast number of users on popular 

social networks it is likely that a small number of them 

will then be actual translations that can be collected. 

4.1. Collecting URL shares 

As stated, the task of searching for parallel sentences in 

all possible combinations of monolingual posts is 

intractable. In addition to considering only monolingual 

posts in different languages, which shared the same 

URL, we also used a couple of other simple heuristics to 

further reduce the search space. 

We split each post into individual sentences and 

compare all sentences in one language with sentences in 

other languages using these simple rules: 

• Original posts share the same URL 

• At most a length ratio of 2 

• Difference between posts’ creation times is no more 

than 3 days 

• Three sequential words in one sentence translate 

with high lexical probability into three other 

sequential words in the other sentence.  

These procedures can be efficiently performed in a 

MapReduce framework handling an enormous amount 

of data.  

If we find a match between sentence � from post �∗ and 

sentence � from post �∗ we mark all possible pairs from 

�
∗ and �∗ as candidates. This algorithm does not take 

the translation direction into account, so it has to be 

performed once per language pair.  

Overall we identified 25 million candidate pairs for 

Portuguese-English and 9 million for Spanish-English 

(in the chosen timeframe). 

4.2. Translation classifier 

The final step is to filter parallel sentences from the 

prepared candidate pairs. It has been shown (in [9]–

[11]) that SVM-based classifiers with lexical features 

are performing quite well for this purpose. 

We rely on a combination of 25 features selected from 

[9]–[11]: 

• ratio of number of words per sentence 

• all-to-all alignment features (per each direction) 

o total IBM score (with all-to-all alignment) 

o maximum fertility 

o number of covered words 

o length of longest sequence of covered words 

o length of longest sequence of not-covered 

words; 

Also all features except the IBM score are normalized 

by source sentence length. 
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• max alignment (per each direction) 

o total IBM score 

o top 3 fertility values for target sentence 

o number of covered words for target sentence 

o “maximum intersection”: maximal number of 

consequent source words, which have 

corresponding consequent target words 

o maximum number of consequent uncovered 

words in target sentence 

Here all features are normalized by target sentence 

length except the IBM score (which  is not normalized) 

and maximal intersection (which is normalized by 

source sentence length). 

We used the same parallel corpora from the baseline 

machine translation training and tuned the classifier in 

order to achieve 95%-98% precision on the dataset. A 

possible problem here is that the data and users posts are 

essentially in different domains and the classifier might 

perform worse on our candidate pairs. It is common 

practice in this case ([11]) to run the filtering iteratively 

– using updated lexical dictionaries every time. 

However, it appeared to not be required, as the extracted 

corpora from the first iteration already gave a significant 

boost in translation quality.  

The results show that the classifier filtered out 99% of 

the candidate pairs, but the remaining 1% was of very 

good quality – we did not find any non-parallel 

sentences while inspecting. The most common error was 

a few extra words in one of the sentences. The results 

show, that this does not negatively affect the final 

performance. Word and phrase extraction is generally 

robust if this does not occur too frequently.   

5. Data Collection Statistics 

Data for both methods was collected from public 

Facebook posts. The collected data is not directional and 

we used the data sets for tests in both directions. Table 2 

shows the exact statistics for the collected data. 

Table 2: Collected data statistics 

 Es-En Pt-En 

Baseline  

data 

500,000 lines 
8.48M/8.44M Es to En 

9.29M/10.06M En to Es 

500,000 lines 
11.29M/11.26M Pt to En 
11.26M/12.24M En to Pt 

Multilingual 

posts 

17,214 lines 
925k Es words 

925k En words 

6,208 lines 
241k Pt words 

236k En words 

URL shares 

 

120,594 lines 
2.91M Es words 

2.73M En words 

95,444 lines 
2.35M Pt words 

2.28M En words 

 

Spanish is more common on Facebook than Portuguese, 

which explains why more data could be collected for 

Spanish-English compared to Portuguese-English. 

6. Translation Experiments 

The developed methods were tested on two language 

pairs, Spanish-English and Portuguese-English for both 

translation directions each. 

6.1. Training and Testing Data 

For both language pairs development and test sets were 

created from manually translated public Facebook posts. 

Approximately 2,000 lines were translated and split into 

development and test sets. 

The selected posts had previously been requested for 

automatic translation for the respective language pair, so 

they are exactly in-domain for the task and exhibit all 

the typical features.  

 

The training data consists of out-of-domain data taken 

from European Parliament data (EPPS) and general 

phrases from the Tatoeba corpus
1
. The training data was 

sorted according to estimated importance [12]  and only 

the top 500k sentence pairs were included in the 

training. The results showed that this did not result in 

any significant drop in translation performance and 

allowed for much faster training runs. 

6.2. Machine Translation System 

We used the open-source Moses statistical machine 

translation system [13]. All systems were trained 

following the standard training method using the 

parallelized implementation mgiza of giza++ [14], [15] 

and standard phrase extraction. The language models 

were regular 3-gram models with Kneser-Ney 

discounting. They were trained on the target side of the 

training data using the SRI toolkit [16], [17]. We 

applied standard minimum error rate training on our 

development sets and tested the systems on the separate 

test sets. All systems were evaluated using the standard 

BLEU metric [18]. 

6.3. Experimental Results 

The experimental results in Table 3 illustrate the 

improvements for all four translation directions. Starting 

from the baseline scores we see varying improvements 

of up to 5.2 BLEU when using either approach. Even 

though the URL shares collected significantly more 

data, the multilingual post approach also results in 

significant BLEU improvements and it outperforms the 

approach for Spanish to English. 

Combining both data sources generally further improves 

the performance, which indicates that the data collected 

is considerably different from each other. Inspection of 

the data confirmed this and it appears that the data from 

multilingual posts often contains sales offers and local 

events while the data collected from URL shares covers 

more popular culture, entertainment and politics. 

                                                             
1
 http://tatoeba.org 
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We also calculated the (token) out-of-vocabulary (OOV) 

rates for each dataset and this further explains the 

improvements. In every case the added data 

significantly improves the OOV situation. This is due to 

improved coverage of spelling errors, slang terms and 

Internet lingo. 

 

The results also show that the URL shares approach 

generally gives greater improvements than the 

multilingual post extraction (with the exception of 

Spanish to English). The data extracted from 

multilingual posts does especially not perform very well 

for translations from English to Spanish or Portuguese, 

while it performs better for translations into English.  

Table 3: Experimental Results – BLEU (token OOV 

rate in parentheses) 

 Es→En En→Es 

Baseline 22.08 (8.7%) 22.48 (12.9%) 

+multi 23.47 (7.8%) 22.72 (12.0%) 

+shares 23.16 (6.0%) 27.61 (10.4%) 

+multi+shares 24.30 (5.9%) 27.78 (10.2%) 

 Pt→En En→Pt 

Baseline 28.39 (7.9%) 26.87 (10.8%) 

+multi 28.92 (7.6%) 26.95 (10.5%) 

+shares 31.34 (6.9%) 31.11 (9.1%) 

+multi+shares 31.67 (6.8%) 30.92 (9.0%) 

 

6.4. Example translations 

In addition to the standard automatic BLEU metric we 

also analyzed how the additional data actually improved 

our translation systems by comparing baseline and 

improved translations. Table 4 shows some example 

translations from the Spanish to English translation 

system with the source and reference translations.  

The first translation is a typical example of a concept 

“memory card” that is unlikely to be present in the out-

of-domain data.  

The second example illustrates an out-of-vocabulary 

term “agrego”, which is not present in the baseline 

system and is then covered in the improved system. It 

also shows that the term “like” is directly used in 

Spanish instead of a Spanish term.  

The next example shows how the translation of the 

Spanish term “cumple” is changed from the incorrect 

“meets” and the last example again contains a regular 

OOV term “cargador” that is not covered previously. 

Table 4: Experimental Results - Example translations 

Source sin tarjeta de memoria . 

Baseline without card by heart 

Improved without memory card 

Reference without memory card 

Source like y agrego !! 

Baseline like and agrego!! 

Improved like and add!! 

Reference like and add!! 

Source feliz cumple preciosa ! 

Baseline happy meets beautiful 

Improved happy birthday beautiful! 

Reference happy birthday, honey! 

Source con el cargador incluido. 

Baseline with the cargador included. 

Improved with the charger included. 

Reference charger included. 

 

 

7. Conclusion 

We presented two methods to collect additional 

translation pairs from public social network content, 

specifically public Facebook posts. First, we identified 

multilingual posts, where the actual posts contain their 

own translation. We also investigate extraction from 

“comparable” public posts identified by sharing the 

same URL.  

 

Using both methods we are able to collect significant 

additional bilingual training data for the language pairs 

Spanish-English and Portuguese-English. Adding the 

collected data from either method to the overall training 

data improves the translation performance significantly 

with overall improvements of up to 5.2 BLEU. The 

main improvements are caused by enhanced vocabulary 

and phrase coverage of social network content. Both 

methods appear to collect data in slightly different 

topics and style, so the improvements are 

complementary and add up to combined higher scores. 

 

Collecting translations based on the URL shares 

approach has the additional advantage to not be limited 

by language pairs that have a lot of need for multilingual 

posts and bilingual speakers; instead it can be more 

generally applied to any language pair. 
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Abstract
In this paper we explore segmentation strategies for the
stream decoder - a method for decoding from a continuous
stream of input tokens, rather than the traditional method of
decoding from sentence segmented text. The behavior of the
decoder is analyzed and modifications to the decoding algo-
rithm are proposed to improve its performance. The exper-
imental results show our proposed decoding strategies to be
effective, and add support to the original findings that this
approach is capable of approaching the performance of the
underlying phrase-based machine translation decoder, at use-
ful levels of latency. Our experiments evaluated the stream
decoder on a broader set of language pairs than in previous
work. We found most European language pairs were sim-
ilar in character, and report results on English-Chinese and
English-German pairs which are of interest due to the re-
ordering required.

1. Introduction
Statistical machine translation (SMT) technology has ad-
vanced to the point where it is becoming capable enough to
be useful for many applications. The process of automatic si-
multaneous interpretation however is another matter entirely.
The interpretation process is difficult, even for skilled human
interpreters, and presents a major challenge to a machine the
since in addition to the translation process, decisions need to
be made about when to commit to outputting a partial trans-
lation. Such decisions are critical since once such an output
is made it can be difficult and highly undesirable to correct it
later if it is in error.

In simultaneous interpretation, the input to the automatic
interpretation system is often a continuous stream of tokens.
Since the output from the system occurs periodically, the out-
put of the system is segmented. In order to produce this
output segmentation two strategies can be employed. In the
first, the stream is segmented before the machine translation
process begins, and the machine translation system is con-
strained to translate using the given segmentation. In order

to distinguish the methods that segment the input prior to the
decoding in a pre-processing step, we will refer to them as
“pre-segmentation” in this paper. In the second, the segmen-
tation process is performed during the decoding of the input
stream. The work presented here is primarily concerned with
the latter, but proposes and evaluates a method to integrate
them.

2. Related Work

The work in this paper is based upon the stream decoder [1],
an extension to a phrase-based statistical machine transla-
tion decoder that allows it to decode directly from continuous
stream of tokens. We describe this methodology in more de-
tail in Section 3.

In [2] the prosody information in the speech signal was
used to segment a continuous stream of speech input for
translation. In their experiments, a silence duration of ap-
proximately 100ms was found to be suitable for segmenta-
tion.

A number of diverse strategies for pre-segmentation were
studied in [3]. They studied both non-linguistic techniques,
that included fixed-length segments, and a “hold-output”
method. The hold-output method method is relevant to the
research in this paper because it relies the same principle
used by the stream decoder. It identifies contiguous blocks
of text that do not contain alignments to words outside them.
An SVM was used to predict these blocks prior to the de-
coding process; the stream decoder operates by identifying
similar structures during decoding. Their experimental re-
sults showed this method to be ineffective. Linguistically-
motivated segmentation techniques were also considered.
Conjunctions, sentence boundaries and commas were inves-
tigated, with commas being the most effective segmentation
cue in their investigation.

In [4] a strategy for pre-segmentation based on searching
for segmentation points while optimizing the BLEU score
was presented. An attractive characteristic of this approach
is that the granularity of the segmentation can be controlled
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by choosing the number of segmentation boundaries to be
inserted, prior to the segmentation process.

The automatic interpretation from English into Japanese
has been studied in [5]. Their approach used heuristics to
identify predicates that are likely to be invertible from a de-
pendency structure derived from a phrase-structure parse of
the English. They exploit the somewhat free word order of
Japanese to re-order the Japanese tokens into an order that is
appropriate for interpretation. The resulting word order may
be a little dis-fluent, but is nonetheless grammatically valid
and is typical of the kind of compromise that needs to be
made during interpretation.

There are also some related studies in translation process
research (for example, [6, 7]) that study in detail the process
of human simultaneous interpretation.

In [8] it was shown that the prediction and use of soft
boundaries in the source language text, when used as re-
ordering constraints can improve the quality of a speech
translation system.

3. Stream Decoding
The stream decoding strategy differs from approaches based
on the pre-segmentation of the stream of input tokens in that
the segmentation decisions are able to exploit information
from the decoding process itself. In [9], it is stated that
long segments of around 10-40 words are required in a pre-
segmentation strategy in order to achieve performance close
to the underlying machine translation system. These long
segments give rise to long latencies, and the penalty for re-
ducing the segment size in order to achieve acceptably la-
tencies is typically severe. These issues have been addressed
recently with more intelligent strategies for choosing the seg-
mentation points [4], but nonetheless we believe the stream
decoding approach deserves more attention in the literature,
and merits further study for the following reasons:

• Stream decoding uses characteristics of the decoding
process for segmentation, and requires no annotation
of the input token stream.

• Stream decoding is able to enforce a maximum limit
on the latency.

• The first results on English-Spanish translation ([1])
were very promising.

3.1. Overview of the Stream Decoding Process

The reader is referred to the original paper [1] for a complete
description of the stream decoding process; in this section,
for completeness, we provide a brief summary of the stream
decoding methodology.

Figure 1 depicts a stream decoding process. The input to
the stream decoder is a stream of tokens (it is also possible
to configure the decoder to operate on tuples of confusable
token sequences from a speech recognition decoder, but for

the purposes of this paper we consider streams of tokens). A
typical phrase-based machine translation system will decode
token sequences, where a token (typically word) sequence
usually represents a sentence in the source language. The
decoder will construct a search graph from this sequence of
tokens and output the n-best derivations of target token se-
quences from this graph.

The stream decoder, in contrast, operates on a potentially
infinite sequence of tokens. As new tokens arrive, states in
the search graph are extended with the new possible trans-
lation options arising from the new tokens. Periodically the
stream decoder will commit to outputting a sequence of tar-
get tokens. At this point a state from the search graph is
selected, the search graph leading from this state is kept, and
the remainder discarded. The search then continues using the
pruned search graph. In our implementation of the stream
decoder the language model context is preserved at this state
for use during the subsequence decoding. In this manner the
stream decoder is able to operate on a stream of tokens that
contains no segment boundary information. The segmenta-
tion occurs as a natural by-product of the decoding process.

3.2. Latency Parameters

The stream decoding process is governed by two parameters
Lmax and Lmin. These parameters are illustrated in Figure 1.
The Lmax parameter controls the maximum latency of the
system. That is, the maximum number of tokens the system
is permitted to fall behind the current position. If interpreting
from speech, the parameter represents the number of words
the system is allowed to fall behind the speaker, before being
required to provide an output translation. This parameter is
a hard constraint that guarantees the system will always be
within Lmax tokens of the current last token in the stream of
input tokens. The parameter Lmin represents the minimum
number of words the system will lag behind the last word
spoken. It serves as a means of preventing the decoder from
committing to a translation too early.

3.3. Determining the Segmentation Point

Algorithm 1 shows the algorithm used to select the segmen-
tation point. The decoder maintains a sequence of tokens that
represent the sequence of untranslated tokens from the input
stream (see Figure 1). As new tokens arrive from the input
stream, they are added to the end of the sequence. When the
length of this sequence reaches Lmax, the decoder is forced
to provide an output. A search state is chosen from the se-
quence of states in the search graph representing the best hy-
pothesis that covers the full sequence of untranslated words.
In short, the best hypothesis is rolled back, state by state,
until the remaining state sequence translates a contiguous se-
quence of source words starting from beginning of the se-
quence of untranslated words, and the number of words that
would remain in the sequence of untranslated words after the
translation is made, is at least Lmin. It is possible that no
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Figure 1: The stream decoding process.

Algorithm 1: Selecting a segmentation point.
Input: A sequence of search states s0, . . . , sn

representing the best hypothesis. s0 being the
initial state, and sn being the final state.

Output: A state si ̸= s0 representing the end of the
translation segment, or s0 if the process
failed to find a suitable state.

foreach i = n to 1 do
if the tokens translated by s0 . . . si are a
contiguous sequence starting immediately after
the last translated source token then

if the number tokens translated by the states
following si at least Lmin then

return si
end

end
end
return s0

Language Pair Training Dev Test
English-Spanish 180853 887 1701
English-Chinese 179651 887 1397
English-German 171721 887 1700

Table 1: Statistics on corpora using in the stream decoding
experiments. The numbers given are in segments, represent-
ing individual subtitles, corresponding approximately to sen-
tences.

such state exists, in which case the algorithm returns s0, and
since the stream decoder is required to make an output, it
must use an alternative strategy.

In this alternative strategy, the stream decoder will un-
dertake a new decoding pass in which it is forced to make
a monotonic step as the first step in the decoding process.
Then, a state is selected from the best hypothesis using Al-
gorthim 1. This process may also fail if the monotonic step
would lead to the violation of Lmin. In our implementation,
we allow the decoder to violate Lmin only in this case.

4. Experimental Methodology

4.1. Corpora

For the experiments that explore the operation of and en-
hancements to the stream decoder we use the TED1 talks data
sets from the IWSLT2014 campaign. We studied English to:
Spanish, Italian, French, German and Chinese, and found the
results on the set of European language pairs were mostly
similar in character, and we therefore report results on only
English-Spanish (a typical pair) and English-German (an ex-
ceptional pair) from this set. Statistics on the corpora are
given in Table 1. The European language data was tokenized
by the Stanford PTBTokenizer. The Chinese was segmented
using the Stanford Chinese word segmenter [10] according
to the Chinese Penn Treebank standard.

4.2. Decoder

Our stream decoder was implemented within the framework
of the OCTAVIAN decoder, a phrase-based statistical ma-
chine translation decoder that operates in a similar manner
to the MOSES decoder [11]. The training procedure was
quite typical: 5-gram language models were used, trained
with modified Kneser-Ney smoothing; MERT [12] was used
to train the log-linear weights of the models; the decoding
was performed with no limit on the distortion.

4.3. Evaluation

The BLEU score [13] was used to evaluate the machine
translation quality in all our experiments. Where sentence
segmentation was known we used both talk and sentence-
level BLEU, and for the experiments where true stream de-
coding was performed on a stream of tokens with no seg-
mentation information, talk-level BLEU was used. In talk
level BLEU each talk is considered to be a single sentence in
the BLEU computation. For consistency only the talk level
BLEU results are reported in this paper, but the results from
the sentence-level BLEU experiments were similar in char-
acter.

1http://www.ted.com
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5. Alternative Stream Decoding Strategies
5.1. Increasing the Output Frequency

5.1.1. Methodology

As explained in the previous section, in the originally pro-
posed stream decoder, the best hypothesis is unrolled back-
wards until a suitable point is found for output. The prin-
ciple here is to find the longest subsequence of states in the
best hypothesis that satisfies the constraints that determine
whether the segmentation point is permissible. However,
other strategies are possible. One plausible strategy is instead
of committing to the longest permissible output, commit to
the shortest. The algorithm is identical to that shown of Al-
gorithm 1 except that the “foreach” loop that ranges from
i = n . . . 1, ranges from i = 1 . . . n. The approach takes less
of a risk, since it will commit to shorter translations. On the
downside, it will lag behind the original strategy given the
same values for its latency parameters.

For this reason, it is unfair to compare these approaches
under the constraint that their Lmax and Lmin parameters
are the same, since there may be a bias in favor of the strat-
egy that commits to the shortest output, and this strategy will
gain its advantage by increasing the latency of the tokens in
the output stream. To remove this potential bias, we there-
fore compare these two methods in the experiment below by
measuring the trade-off between machine translation quality
(measured using the BLEU score) and average latency per
token Lavg . That is the average number of tokens each token
is behind the input stream, given by:

Lavg =

∑
i=1,N L(i)

N
(1)

where N is the total number of words in the input stream,
and L(i) is the latency after word i has been processed.

5.1.2. Experiment

Figure 2 shows the results on English-to-Spanish translation
task. Experiments were run for values of Lmax in the range
1 to 10, and the points are annotated with these values. The
oracle values of Lmin, that is the value of Lmin that gave
rise to the highest BLEU score, were used. The graph plots
Lavg against BLEU score for each experiment. For high and
low values of Lmax the two strategies are similar in perfor-
mance, but for 3 ≤ Lmax ≤ 6 the strategy that makes more
frequent, but shorter output is the better strategy. Of course
there may be human factors to consider, but in terms of the
machine translation evaluation scores at least, the shorter out-
put strategy would seem to be the more effective approach,
especially when lower latencies are required. This approach
varied in its effectiveness across language pairs however,
with some European language pairs (for example English-to-
French) showing almost no difference in performance. The
proposed strategy was always at least as good as the baseline,
and therefore it was adopted in the remainder of the experi-
ments reported here.
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Figure 2: The trade-off between BLEU score and average
latency for two different strategies for selecting the segmen-
tation point.

5.2. Minimizing the Number of Forced Monotonic Steps

5.2.1. Motivation

In Section 3.3 it was explained that during stream decoding
the best hypothesis is rolled back until a satisfactory segmen-
tation point is found. In some cases, no such segmentation
point exists and the decoder resorts to an alternative decoding
strategy that forces the first step of the decoding process to
be monotonic. This section is motivated by the concern that
constraining the decoder in this manner will lead to transla-
tion hypotheses that diverge from the optimal path, impact-
ing the overall translation performance. We therefore seek
a method that can reduce the number of forced monotonic
steps.

5.2.2. Methodology

One plausible method to alleviate the issue is to extend the
stream decoding approach to allow it to select a segmentation
point from the whole search graph, rather than from the 1-
best hypothesis. We proposed a straightforward extension of
the existing approach: to select a state from the n-best list.
The proposed method applies Algorithm 1 iteratively over
an n-best list of derivations, from rank 1 to n, terminating on
the first rank in which a suitable segmentation point is found.
Only if no segmentation point is found in the n-best list, does
the decoder resort to a forced monotonic decoding step.

We analyzed the effect of the approach on the number of
forced monotonic steps for English-Spanish. The results are
shown in Figure 3, the oracle value of Lmin is used. The fig-
ure shows the percentage of translated segments that were the
result of a decoding hypothesis that contained a forced mono-
tonic step. The results clearly show that the proposed method
can have a substantial impact on the number of forced mono-
tonic steps. We investigate whether or not this leads to an
improvement in machine translation performance in the next
sections.
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Figure 4: Using the n-best hypotheses to select the segmentation point for English-Spanish.
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(b) Selecting from the 20-best hypotheses.

Figure 5: Using the n-best hypotheses to select the segmentation point for English-Chinese.
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Figure 3: The proportion of output segments containing
forced monotonic decoding steps for different length n-best
lists.

5.2.3. English-Spanish Translation

Even though the number of forced monotonic decoding steps
can be reduced by using an n-best list, it does not guarantee

an improvement in performance. Selecting a state from a
hypothesis other than the 1-best comes with a price as hy-
potheses further down the n-best list are likely to represent
translations of lower quality.

Figure 4 shows the results of an experiment using the
proposed method in the previous section on the English-to-
Spanish task. The experiments used identical settings apart
from the length of the n-best list used to select the segmen-
tation point. The baseline on both graphs represents the per-
formance of the underlying phrase-based SMT decoder when
decoding the data according to the segmentation provided in
the corpus.

The results show that the stream decoder, which must
provide its own segmentation is able to achieve evaluation
performance comparable to the baseline SMT system. The
stream decoder may have been helped by the fact that the
baseline system was decoding without a distortion limit.
Typically languages such as English and Spanish, having
similar word orders benefit from a constraint on the reorder-
ing, which the stream decoder may be providing as a conse-
quence of more monotonic decoding process. Nonetheless
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we feel its performance is impressive.
The results of this experiment show our proposed method

is very effective in improving the stream decoder. There are
two important differences in the graphs, firstly the curves do
not drop as sharply as Lmin is increased, making the ap-
proach less sensitive to the selection of this parameter. Sec-
ondly, and more importantly, the performance on the experi-
ments with lower latencies (where Lmax is less than 6), is im-
proved overall. We ran a set of experiments on the English-
Spanish task to determine the effect of varying the size of the
n-best list. We found that the approach was not very sensi-
tive to the size of the n-best list for small values of n. The
best results were obtained with 5 ≤ n ≤ 20.

5.2.4. Other Language Pairs

The original stream decoder was evaluated on an English-
Spanish task, and for consistency with the original work, so
far we have shown results on the same language pair (but a
different corpus). We ran experiments on all of the languages
for which data was provided for the IWSLT2014 machine
translation shared tasks. The stream decoder proved robust
to differences in the language pair chosen. The results were
generally similar in character to those presented for English-
Spanish. We have omitted these results for brevity, and in-
stead present results on the English-Chinese and English-
German pairs which are interesting because their word orders
are not similar, and as a consequence a substantial amount of
reordering is necessary in the decoding process. These lan-
guage pairs were expected to present more of a challenge to
the stream decoder.

We conducted the same experiment presented in the pre-
vious section on an English-to-Chinese task, and the results
are shown in Figure 5. As expected, it can be seen in the Fig-
ure 5a that the cost in terms of BLEU score is greater when
lower latencies are required than for English-to-Spanish. The
results have the same general character as before; the use of
the n-best list has improved the performance of the lower la-
tency curves, and also made the decoder far less sensitive to
variations in the Lmin parameter.

Among the European languages, German has some sig-
nificant structural differences that can be expected to create
difficulties for simultaneous interpretation. We show the re-
sults on the English-German pair in Figure 6. The results
appear similar to the English-Chinese results, with a larger
penalty in BLEU for shorter latencies. Moreover, the curves
on the graph fall more sharply than the other languages tested
with increasing Lmin, indicating that the stream decoder is
more sensitive to the value chosen for this parameter.

5.3. Selecting the Most Productive State

Instead of selecting a state in the set of 1-best or n-best hy-
potheses according to the algorithms described in the previ-
ous section, it is also possible to use other criteria to select
the search state from the full search graph. One plausible
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Figure 6: Performance on the English-German task (Using a
20-best list).

heuristic is to select the state that is in the greatest number of
search paths leading to the final stack; the “most productive”
state. The intuition behind this idea was that this state might
provide the greatest number of good alternative search paths
for decoding the future tokens. In the event of a tie in which
several states gave rise the same number of hypotheses on the
final stack, the state on the highest probability path was given
precedence. If this failed to break the tie, the state closest to
the initial state on the path was selected.

Unfortunately this strategy proved to be less effective
than the simpler strategies described previously. We believe
the reason may have caused by this strategy selecting states
on sets of paths where the best path in the set had too low
a rank. We would like to pursue similar ideas in the future,
with the overall goal of removing the parameter Lmin en-
tirely from the decoding process, allowing the decoder more
freedom to decode.

5.4. Introducing Segmentation Points into the Stream

5.4.1. Motivation

As mentioned in Section 2, it has been shown that an input
stream can be segmented effectively prior to the decoding
process, using information derived from the input word se-
quence itself (punctuation, part-of-speech tags etc.) and also
information from the speech recognition system (for example
prosody). In this section we explore the idea of introducing
segmentation information into the input stream, to support
the segmentation process during stream decoding.

5.4.2. Methodology

In [3] the most effective segmentation strategy was to place
segmentation boundaries at commas in the input. In addition
segmenting at sentence boundaries also proved to be effec-
tive. Using predicted rather than reference commas did not
seem to have a negative impact on machine translation per-
formance.

We study the effect of introducing special tokens into the
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Figure 7: The effect of introducing segmentation information into the stream for English-to-Spanish.

stream to mark the ends of both sentence internal and sen-
tence final segments. In our experiments we use the positions
of commas in the corpus as the position at which to introduce
sentence internal segment termination tokens (denoted ⟨p⟩),
and the sentence segmentation in the corpus to delimit sen-
tences (using the token ⟨s⟩).

There are a number of plausible strategies for using these
tokens during decoding, and we wish to explore more of
these in future research. In these experiments we study the
case where priority is given to the segmentation indicated
by the tokens in the input stream in the following manner:
when an ⟨s⟩ or a ⟨p⟩ token arrives on the input stream, the
stream decoder translates all untranslated words, and creates
an initial search state from which to continue the decoding
process. In the case of the ⟨p⟩ token, the language model
context is preserved; in the case of ⟨s⟩ it is discarded. In both
cases the decoder can violate the Lmin constraint.

5.4.3. Experiments

The experiments were carried out on data with the punctua-
tion removed from both source and target sides to eliminate
the ambiguity of where to place the segmentation tokens in
the stream. The punctuation was not used in training the ma-
chine translation systems’ models, nor was it used in evalu-
ation, but it was used to place the ⟨s⟩ and ⟨p⟩ tokens. The
results are shown in Figure 7. It is clear from Figure 7a that
sentence boundaries were useful to the stream decoder. The
experiment in Figure 7b shows that adding ⟨p⟩ information
surprisingly did not give any additional benefit.

6. Conclusions

In this paper we have presented a study of several variations
of the stream decoder. The stream decoder is able to decode
from a continuous stream of tokens, and is capable of per-
forming segmentation as it decodes. Previous studies have
shown this technique can achieve respectable levels of per-

formance whilst maintaining a usefully low level of latency.
The experiments in this paper support the original findings
and also broaden the study of this decoder by evaluating it on
new datasets and new language pairs. Of particular interest
were English-Chinese and English-German tasks, which are
challenging due to the differences in word order. Our results
show that the although BLEU score was impacted at shorter
latencies, the behavior of the stream decoder was quite simi-
lar in character to that of the language pairs. We believe the
original claims that stream decoding can achieve low latency
translation with only a small degradation in performance are
valid, and can be extended to a broad range of language pairs.

During the course of the research for this paper, we stud-
ied a number of alternative strategies for increasing the per-
formance of the decoder. We found a simple but highly effec-
tive variant of the stream decoder was one that selected the
segmentation point using the n-best list of hypotheses rather
than the 1-best. In our experiments this technique substan-
tially improved the performance of the decoder at shorter la-
tencies and also made the decoder less sensitive to the value
of the minimum latency constraint.

This paper also proposed a technique for integrating
segmentation information from an external source into the
stream decoding process. Our experiments show that reliable
sentence segmentation information may be used effectively
in stream decoding to guide the segmentation process.

In future research we would like to study the behavior of
the stream decoder on language pairs with longer distance
reordering such as Japanese or Korean to the European lan-
guages.
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Abstract
Statistical Machine Translation produces results that make
it a competitive option in most machine-assisted translation
scenarios. However, these good results often come at a very
high computational cost and correspond to training regimes
which are unfit to many practical contexts, where the ability
to adapt to users and domains and to continuously integrate
new data (eg. in post-edition contexts) are of primary impor-
tance. In this article, we show how these requirements can
be met using a strategy for on-demand word alignment and
model estimation. Most remarkably, our incremental system
development framework is shown to deliver top quality trans-
lation performance even in the absence of tuning, and to sur-
pass a strong baseline when performing online tuning. All
these results obtained with great computational savings as
compared to conventional systems.

1. Introduction
Statistical Machine Translation (SMT) has considerably ma-
tured in the past decade and is nowadays a competitive op-
tion in most practical machine-assisted translation scenarios.
A notable fact about SMT technology is that the construction
of high-performance systems is extremely expensive. Even
if using appropriate computing resources and parallel pro-
gramming techniques, building systems for very large data
sets requires a significant processing time before any trans-
lation can be produced. If individual processing steps may
be greatly accelerated, including e.g. word alignment [1]
or system tuning [2], the requirement to process the entire
parallel data significantly delays the availability of a trained
system. And even though a careful pre-selection of bilingual
sentences may greatly reduce the size of the training material
[3], this selection is itself time-consuming and is not justified
when one only needs to translate a handful of documents or
documents from multiple domains.

In addition, the trained translation models are static. In a
state-of-the-art system, all models are extracted from a pre-
defined parallel corpus, and are then used to translate any
type of input text. However, new data are constantly made
available, and the state-of-the-art SMT approaches cannot
seamlessly take advantage of them to improve their perfor-
mance. Incorporating newly available data can help to in-
crease the n-gram coverage and to improve the parameter

estimates of an existing system. These observations provide
motivation for incorporating newly available data into exist-
ing systems, in particular when the new data is known to be
directly relevant to the application documents.

Previous works have empirically shown that not all
phrase translation examples are necessary to reach top per-
formance, so that phrase tables can be built on a per-need
basis for a given input text using random sampling of trans-
lation examples [4, 5]. The main strength of these ap-
proaches is that they reduce the computation time of transla-
tion models and make it possible to extract translations from
very large parallel data, even with arbitrarily long translation
units. However, these approaches still require to align all the
available parallel data at the word level, a serious bottleneck
when working with very large amounts of parallel data.

In this work, we propose to experiment with an archi-
tecture where word alignments are only computed on a per-
need basis. This proposal naturally enables efficient, plug-
and-play use of any newly available parallel data, as well
as online learning of system parameters. This is similar to
the objectives of stream-based SMT [6], but crucially does
not require the actual alignment of all available data. This
means that we are able to develop systems even faster: as our
experiments show, immediate integration of newly translated
documents, combined with online tuning, make it possible
to dispense altogether with the development step. This prag-
matic solution offers both the capacity to deliver translations
to users much earlier, but also to quickly improve subsequent
automatic translations.

The rest of the paper is organized as follows. In Sec-
tion 2, we describe our framework for efficient on-demand
development of SMT systems. We then present in Sec-
tion 3 experiments designed to demonstrate the capabilities
and flexibility of our framework. We finally conclude by re-
viewing related work in Section 4.

2. On-demand development of SMT systems

2.1. On-the-fly model estimation

A first major difference between our system and a standard
SMT pipeline is the ability to compute phrase translation
probabilities on a per-need basis, based on small samples of
parallel sentences. In our architecture, parallel sentence pairs
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are stored in a suffix array [7], enabling fast access to phrase
instances.1 At decoding time, the translation probabilities for
all source phrases s̄ (up to a given length) are computed based
on a subset of occurrences of s̄, where the sample size (de-
noted as M ) enables to balance between speed and precision
of estimates.

Previous approaches [4, 5] to sampling have resorted to
random deterministic sampling, which picks a given number
of examples by scanning the suffix array index at fixed inter-
vals. The translation probability of a source phrase is then
computed as:

p(t̄|s̄) = count(s̄, t̄)∑
t̄′ count(s̄, t̄

′)
(1)

where count(·) is the number of occurrences of the given
phrase pair in the sample, which may include occur-
rences where translation extraction was not possible (what
Lopez [5] calls a coherent estimation of the translation
model, which is found to generally improve performance).

As sampling is performed independently for each source
phrase, the computation of the inverse translation probability
p(s̄|t̄) can no longer be performed exactly. If needed,2 the
following approximation can be used instead:

p(s̄|t̄) = min(1.0,
p(t̄|s̄)× freq(s̄)

freq(t̄)
) (2)

where freq(·) is the relative frequency of the given phrase
in the entire corpus. The numerator (p(t̄|s̄) × freq(s̄))
represents the predicted joint probability of s̄ and t̄.

2.2. On-demand word alignment

The second main peculiarity of our architecture is the abil-
ity to perform word alignment on demand for a subset of
selected bi-sentences. Word and phrase alignments are re-
quired to compute Equation (1), and are obtained using our
implementation of the sampling-based alignment method de-
scribed in [8], which relies on ideas originally introduced in
[9]. In this approach, the word alignment between a pair
of parallel sentences is generated by a recursive binary seg-
mentation process. Starting with a sentence-level alignment
(explicitly available in the parallel corpus), segmentation is
performed recursively to match smaller blocks until no block
can be further segmented.

This process can be viewed as approximate top-down
ITG parsing [10], where matching blocks are determined
based on association scores between the words in the source
and target sentences. In this study, association scores for the
words in the source part of the bi-sentences of interest are
generated by a sampling-based transpotting method, which

1Querying a suffix array for a phrase of k words can be performed in
(k + log(|C|)) operations, where |C| is the corpus size. A suffix array can
be constructed in O(|C| log(|C|)) time.

2Although this model has been shown to be non essential, we use it for
the stability of our systems, especially when untuned systems are used.

also relies on a sampling strategy and is thus also quite fast.
It is however worth noting that any kind of lexical score could
be used to measure the strength of word associations.

2.3. System construction

As described before, our framework contains two main parts:
on-the-fly model estimation with deterministic random sam-
pling (denoted as rnd, henceforth) and on-demand word
alignment (denoted as owa, henceforth).

The corresponding processing architecture is sketched in
Algorithm 1. Given an input document d to translate, the
system first extracts all possible source phrases, Σ[d]. Then,
for each source phrase s̄ in Σ[d], we perform deterministic
random sampling to select translation examples from the par-
allel corpus. We then obtain a translation sample of s̄, S[s̄].
The sentence pairs in S[s̄] are then aligned by our on-demand
word alignment, where the generated alignments are denoted
as AS[s̄], and are then used to extract the translations and to
compute model parameters θs̄ for the source phrase s̄. This
process is repeated for all source phrases in Σ[d], and the re-
sulting translation table can then be used by a phrase-based
decoder to translate the input text into the target language.

Besides the translation models, the other models in our
system are the same as in the default configuration of the
moses system [11], including the lexical weighting and lex-
icalized reordering models. These models are also computed
on-demand based on the computed word alignments.

Algorithm 1 On-demand development procedure

Data: training corpus C,
Input: an input document d, sample size M
compute Σ[d]
for all s̄ ∈ Σ[d] do

S[s̄] = rnd(M,C, s̄) // Sampling
AS[s̄] = owa(S[s̄]) // Alignment
estimate(θs̄,S[s̄],AS[s̄]) // Estimation

end for

3. Experiments
In this section, we have chosen to illustrate two favorable
use cases of our framework in order to demonstrate its ca-
pabilities and flexibility. The data used in this work is pre-
sented in Section 3.1. In Section 3.2, we will use our system
in a translation for communities task, where documents to
be translated are from the same origin, to show its ability to
quickly adapt to a specific domain and take advantage of sim-
ilarities between documents to outperform a strong baseline.
In Section 3.3, another even more difficult use case, which
we called any-text translation, will be studied.

3.1. Data

We selected English-French as our main language pair for
this study, mostly because large quantities of parallel data
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Documents # lines #tokenen #tokenfr Domains
WMT 16.6M 396.9M 475.1M Mixture

Cochrane(dev) 743 16.5K 21.4K Medical
Cochrane(100 docs) 1.8K 38.6K 49.3K Medical

talk1 232 4.2 K 4.3 K TedTalk
talk2 249 5.2 K 5.9 K TedTalk
book1 1093 22.5 K 23.8 K Literature
book2 1604 35.1 K 37.8 K Literature

subtitle1 495 5.0 K 5.6 K Open subtitle
subtitle2 528 4.8 K 5.2 K Open subtitle

php 1000 11.6 K 12.5 K Technical manual
kdedoc 995 11.8K 12.5 K Technical manual

Table 1: Description of corpora used in our experiments.

are readily available for this language pair. Data from the
Workshop on Statistical Machine Translation (WMT)3 from
a variety of domains were used, as well as additional data
from various origins from the medical domain and used in
the WMT’14 medical task.4 This dataset, denoted as WMT,
contains data from different domains, including News com-
mentaries, parliamentary debates and medical texts.

In the “translation for communities” scenario, we used
data of systematic summaries for specialists from the
Cochrane collaboration.5 The Cochrane dataset is made
up of short documents typically containing one or two dozen
of sentences. In the “any-text translation” scenario, we chose
8 documents from various domains: two entire transcriptions
of TED Talks, two translated books, two movie subtitles and
two technical manuals. Table 1 provides basic statistics re-
garding these corpora. Tokenization was performed using
in-house tools.

3.2. Translation for communities

In the translation for communities task, we make two impor-
tant assumptions: the first one is that it can be desirable to
provide automatic translations early, even before any human
translation has been performed, to handle documents of un-
known origin so far (as is the case when a new application
domain is considered); the second one is that there exists
some clear relation between consecutive application docu-
ments, so that their set of optimal parameters are close to one
another. A consequence of these assumptions is that a classi-
cal development set will not be needed anymore, a significant
economy in practice. Nonetheless, our proposal only makes
sense if it also compares favorably in terms of translation
evaluation to a standard system making use of a development
set.

We thus constructed a vanilla moses system. We used
mgiza++6 to align the full bi-corpus and the moses scripts
to extract a huge phrase table and a reordering table for the
entire parallel corpus (respectively 20Gb and 7.5Gb com-

3http://www.statmt.org/wmt13
4http://www.statmt.org/wmt14
5http://summaries.cochrane.org
6http://www.kyloo.net/software/doku.php/mgiza:

overview

Configs Translation quality PT construction time
BLEU TER user CPU wall clock

moses 34.12 48.59 1,212h 252h
on-demand 28.58 49.54 76h 7h

+spec 32.33 46.42 76.5h 7h
+online 36.41 46.44 76.5h 7h
+dev 36.20 46.10 148.5h 14h

Table 2: Results for the owa system on a large-scale English-
to-French translation task.

pressed on disk), which have to be filtered for each input text.
The medical-domain LM was trained on the French side of
WMT’14 medical data (containing 4.8M sentences and 78M
tokens). The system was optimized with KBMIRA, a vari-
ant of the Margin Infused Relaxation Algorithm described
in [12], on the Cochrane development set. Translations are
computed with the moses phrase-based decoder. Results are
reported using the BLEU [13] and TER [14] metrics.

In this first scenario, we consider a situation where a
stream of documents needs to be translated. After each doc-
ument has been automatically processed, we also make the
plausible assumption that it is post-edited by a human trans-
lator, thus providing new data that can be used to update both
the models and parameters of the systems before translating
the next document.

This situation is illustrated using the Cochrane dataset,
where we take the 100 documents constituting the test set
(see Table 1) to simulate the document stream. In the follow-
ing, we describe a series of increasingly rich configurations
and show that our framework can deliver fast, yet competi-
tive translations for these documents.

3.2.1. On-demand development of systems (on-demand)

In the first configuration, our system processes each in-
put document separately in sequence, as described in Algo-
rithm 1. Word alignments of previously aligned sentences
will be cached and readily be available for subsequent docu-
ments. Each document-specific translation table is fed to the
decoder7, which uses the default values for all model param-
eters. In this configuration, no tuning is actually performed,
which eliminates completely the need for a development cor-
pus and allows us to obtain translation of documents almost
instantly.8

Results for this untuned configuration (see on-demand
in Table 2) are lower by 5.5 BLEU point (BP) than those
of the conventionally tuned moses system, which can be
mostly attributed to the absence of tuning. However, trans-
lations for the test set are delivered much faster, where our
system is x36 times wall clock faster than moses.

7We used the moses decoder in our experiments, whose default param-
eters are: 0.3 for all 7 reordering features, including 6 lexical reordering
features and 1 distance-based reordering feature; 0.2 for all 5 translation
features; 0.5 for the language model and −1 for the word penalty.

8In this work, the language model is still pre-trained. Future work will
include the incremental / on-demand estimation of language models [15].
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Figure 1: Evolution of the average per token processing time
for a sequence of documents.

As mentioned before, the computed word alignments are
cached and are available for translating subsequent docu-
ments. To further analyze the effect of the cache, Figure 1
shows how the average per token processing time decreases
as more and more documents from the same flow are trans-
lated. At the outset, estimation time per token decreases
quickly as a result of the use of the cache; as more and more
documents are translated, the average estimation time con-
tinues to decrease, albeit at a slower pace.

3.2.2. Plug-and-play data integration (+spec)

We now consider the following incremental training regime:
after each individual document is translated, the post-edited
version of the document becomes available.9 Our on-demand
framework makes it natural and straightforward to integrate
any newly available parallel data without any full retraining.

In the following experiment, each newly available
Cochrane document is added to a “specialized” corpus,
denoted by spec. A separate phrase table for each docu-
ment is estimated from spec using Algorithm 1; consider-
ing the very small size of our specialized source, the cor-
responding phrase table, built from previous documents in
the sequence {di, i = 1 . . . t− 1}, contains only two scores
per phrase pair: the direct translation model score and the
phrase penalty. As we still assume that no development set is
available, the parameters for the new models are being thus
simply copied from the main table. Note that in this set-
ting, the spec phrase table is used as a back-off table to the
phrase table estimated from the main, static corpus. While
this may seem counter-intuitive, we did this primarily be-
cause the spec translation model is comparatively poorly
estimated, because of the small quantity of data used. How-
ever, for those domain-specific terms, phraseology or long
phrases which usually only exist in the in-domain data, we
could use the spec phrase table to translate them.

9In fact, the Cochrane dataset used in this study is made of two parts:
a large portion of the data was translated by human translator from scratch,
while a smaller amount a document where actually produced through post-
edition. We still use this data as a post-edited corpus in our experiments,
although these two kinds of data are slightly different. We believe this does
not affect our experimental conclusions [16].
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Figure 2: Document-level comparison with moses system
in English-to-French translation direction. The y-axis repre-
sents the difference in BLEU score (∆BLEU) between our
systems and the vanilla moses system for each document in
the sequence.

Results in Table 2 show that the additional table (+spec)
helps to significantly improve translation quality over the raw
on-demand configuration (+3.7 BP), for a modest addi-
tional processing time of half an hour for aligning the content
of the first 99 documents. Since the spec table for document
dt is estimated based on the previous t − 1 documents, the
quality of the phrase table improves over time.

Figure 2 shows the document-level comparison between
our systems (on-demand and on-demand+spec) and
the vanilla moses system, where the curves represents
the difference of performance (evaluated by BLEU) be-
tween moses and the corresponding system on each doc-
ument in the stream. The parts above the horizontal line
means the corresponding system is better than moses; oth-
erwise, the corresponding system is worse. We first ob-
serve that the document-level gap between on-demand and
on-demand+spec is much larger (around 5 BP) at the end
of the document sequence than at the start, confirming that
the quality of the spec phrase table improves over time.
We also see that on-demand systematically underperforms
moses on all documents, which was expected given the gap
in corpus-level performance. Interestingly, the use of the spe-
cialized phrase table, on-demand+spec, yields fast im-
provements and matches the performance of moses after
about 40 documents have been translated. We can conclude
that the integration of such a specialized corpus allows our
system to achieve nearly the same performance as the vanilla
moses system but delivering translations much faster. Fur-
thermore, these results are obtained without using a devel-
opment set, a significant economy both in human transla-
tion time and in system development time. Although the ob-
tained results strongly depend on the nature of the data used,
the plug-and-play data integration feature of our framework
is very useful to improve the translation performance when
translating streams of related documents.

217

Proceedings of the 11th International Workshop on Spoken Language Translation
Lake Tahoe, December 4th and 5th, 2014



0 20 40 60 80 100

Document id

8

6

4

2

0

2

4

6

8

∆
B

LE
U

on-demand+spec

on-demand+spec+online

on-demand+spec+online+dev

Figure 3: Document-level comparison with moses system
in English-to-French translation direction. Initialization ei-
ther uses moses default values (+online), or parameters
tuned on a development set (+dev).

3.2.3. Simple online tuning (+online)

We have previously shown that our on-demand framework
allows us to seamlessly integrate newly available data, yield-
ing systems that match a moses system trained in a con-
ventional way after just 40 documents of our specific data
source. Remarkably, these results were obtained without any
parameters tuning. We now consider a simple online tuning
strategy to further explore the potential of on-demand system
development. In practice, the system’s weights are retuned
after each document has been translated (and post-edited) as
follows: Taking the previous weights as the initial point, we
run the parameter tuning process (here KBMIRA) on the just
translated and post-edited document; the resulting parame-
ter values are then averaged with the parameter values of the
10 previous documents10, and then used for translating the
next document. Additionally, in order to leverage the spec
table, we also allow here the spec phrase table to compete
with the phrase table estimated from the static corpus [17]
instead of having the latter take precedence.

Results for this last configuration are given in Ta-
ble 2 (+online). Our simple online tuning yields
a significant improvement (+4.1 BP) over the untuned
on-demand+spec configuration. Even though the two
configurations cannot be directly compared at the corpus-
level, since our system integrates a growing set of in-domain
data, while moses on its part greatly benefits from the in-
domain development data, we still note that our framework
now outperforms the moses baseline (+2.3 BP). More in-
terestingly, comparison at the document-level (see Figure 3)
demonstrates the strong potential of our framework: moses
is systematically outperformed after fewer than 20 docu-
ments are translated. As for processing time, documents
being very small, online tuning only takes 3mn (wall clock
time) on average for each document in this experiment.

Our final experiment in the translation for communi-
ties scenario is designed to analyze the performance of
our last configuration if it starts with conventionally tuned

10We restrict to the more recent documents to make tuning more reactive
to changes in the quality of the spec table.
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Figure 4: Document-level comparison with moses system
in French-to-English translation direction.

initial parameters. We thus first tuned the system on
the development set, and then used the tuned parameters
to initialize the starting parameters of this new configu-
ration. The result is reported in Table 2 (+dev): us-
ing tuned parameters to initialize the system yields no sig-
nificant change on translation quality. Comparing to the
on-demand+spec+online system, BLEU by 0.2 points
but TER is better by 0.3 points. The document-level com-
parison in Figure 3 shows, as expected, that initializing with
parameters tuned on the development set yields better per-
formance than on-demand+spec+online at the start of
the document sequence. However, after fewer than 20 doc-
uments have been processed, there is no visible difference
between the two systems. We can thus conclude that the on-
line tuning strategy implemented in our framework allows us
to effectively dispense with the use of a development set.

Finally, we also performed these experiments on the
French-to-English translation direction, and the correspond-
ing document-level results are shown in Figure 4. First,
for the on-demand+spec system, we observe that the
performance of the system improves with the number of
translated documents, although it is not as significant as
the improvement observed in the English-to-French trans-
lation direction (as shown in Figure 3). This is proba-
bly related to the diversity of the language: indeed, the
100 Cochrane bilingual documents contain 3 854 unique
English words and 4 398 unique French words. A larger
vocabulary implies a lower repetition rate, which makes
+spec less beneficial. When applying online tuning,
our best system (on-demand+spec+online) again im-
proves quickly and outperforms the moses baseline after
less than 20 documents have been translated.

3.3. Any-text translation

In this section, we consider a comparatively less studied, al-
beit somewhat more realistic, scenario, where the character-
istics of the input text are completely unknown before trans-
lation. We thus make the following assumptions:

• Training data was collected opportunistically and no
specific document metadata (e.g. genre, document
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boundaries) are available for the full data set.

• The input text corresponds to a coherent discourse (i.e.
is not made by concatenating unrelated documents).

• The text can be from any arbitrary domain, which pre-
cludes any off-line adaptation using a predefined spe-
cific bilingual corpora.

• No adapted development set is available, which pre-
cludes the use of tuning techniques relying on a devel-
opment corpus from the same data source or domain.

Since the input text is completely unknown and could be
from any domain, we dub this scenario any-text translation.

As presented above, experiments are performed on 8 doc-
uments from various domains (see Table 1). Each document
is translated independently, sentence by sentence. Transla-
tion rules are extracted from the training corpus for each sen-
tence using an adapted version of Algorithm 1, where each
sentence is treated as a single document.

We also make the same assumption as in Section 3.2 that
after each sentence has been automatically translated, a ref-
erence translation is made available by a human translator
(simulating a post-edition scenario, even though the docu-
ments used in this section have not been post-edited). These
translated and reference data are used to update both the
models and parameters for the next sentences. In this study,
each sentence is translated with two phrase tables: one is es-
timated based on the training data of the system, the other is
estimated based on the previously translated sentences in the
same document (denoted by indoc11).

Again, we chose the large-scale corpus WMT (see Table 1)
as the training data and the vanilla moses system as our
baseline. Since no development set is available, we chose
to use the decoder’s default parameters as initial parameters
for decoding. As for the target language model, a general-
domain LM was used which was trained on the WMT corpus.
Since the WMT corpus contains very large quantities of data
from different domains, this LM could be considered as a
reasonable general-domain LM.

Experimental results are presented in Table 3, where
moses is the baseline system, on-demand represents our
on-demand SMT system, and +indoc represents our on-
demand SMT system but also using the indoc phrase ta-
ble in decoding. First, by comparing the results of moses
and on-demand systems, we find moses is better than
on-demand on all documents on BLEU. On TER, moses
is also better than on-demand on most documents (5 out
of 8 documents). We attribute this result to the effect of
sampling and the differences in word alignments: our mod-
els are estimated based on a subset of translation examples
while the models in moses system are estimated based on
all examples in the corpus and our on-demand word align-
ments are probably a little worse than the mgiza++ word

11Actually, indoc is similar to previous spec phrase table, but indoc is
estimated based on translated data in the same document.

Documents
Baseline Systems
moses on-demand +indoc

BLEU TER BLEU TER BLEU TER
talk1 27.84 56.99 27.27 57.34 28.30 56.53
talk2 30.96 50.20 29.13 50.88 29.08 50.94
book1 15.29 68.64 14.87 67.93 17.12 65.56
book2 14.71 69.21 13.84 69.39 14.75 68.23

subtitle1 25.10 56.44 24.25 55.69 24.41 55.30
subtitle2 29.79 49.85 29.05 49.96 29.72 49.60

php 17.42 66.24 16.43 67.38 25.17 60.96
kdedoc 11.02 82.09 10.08 80.16 13.43 77.47

Table 3: Any-text machine translation results for English-to-
French translation.

alignments on large-scale corpora. Second, by adding the
indoc phrase table, our on-demand systems (+indoc)
are generally improved, except on talk2, and they are bet-
ter than moses for BLEU on most documents (6 out of 8
documents). Apparently, such improvements depend on the
repetitiveness and the length of documents.

In this use case, it is also possible to perform parameter
tuning during the translation of individual documents. Un-
like the situation in Section 3.2, where the translation unit
was the document, here one sentence contains too little in-
formation to perform parameter tuning. Hence, instead, we
chose to perform parameter tuning after small batches (of
size 100 in our experiments) have been translated. In this ex-
periment, the first sentences of a document are always trans-
lated using the decoder’s default parameters. After each has
batch been translated, the corresponding references are made
available and used as a development set to tune the param-
eters, again with KBMIRA. The updated parameters are then
used to translate subsequent sentences. In order to assess the
effect of parameter tuning on translation results, we only ap-
ply the tuning process to a few long documents (> 1000 sen-
tences): book1, book2 and php.

For book1, applying parameter tuning after each group
of 100 sentences for the +indoc system yields a further im-
provement of +2.4 BP and −0.1 TP. On book2, the result
is less clear: the BLEU score is improved by +0.3 BP com-
paring to the +indoc system, but the TER score becomes
worse by +1.8 TP. On the php document, a significant im-
provement from the +indoc is observed (+9.2 BP, −4.6
TP).

To better understand the behavior of our system, we also
performed document-level analyses on these results. Fig-
ure 5a shows the percentage of n-grams occurring in sen-
tence st that were also seen in the previous t − 1 sentences
{si, i = 1 . . . t − 1}. For instance, for the sentences at the
end of book1, about 20% of 4-grams (and nearly 40% of
3-grams) were found in the previous sentences of the docu-
ment. Figure 5b shows the BLEU scores estimated on each
group of 100 sentences. In the +indoc system, all sentences
are decoded with the default parameters of moses, while in
the +online system, the decoder parameters for each group
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Figure 5: Experimental results on book1.
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Figure 6: Experimental results on book2.

of 100 sentences are tuned on the previous 100 sentences.12

As shown in Figure 5b, the +indoc system takes advantage
of the repetitiveness of the document and its performance is
systematically better than moses after translating 200 sen-
tences. By applying parameter tuning on each group of 100
sentences, results are further improved, and to a larger extent
(about 5 BP) at the end of the document.

Now turning to book2, we find that the results are very
different than for book1. First, as shown in Figure 6a,
the n-gram repetition rate is lower than that of book1, es-
pecially for 3-grams and 4-grams. For instance, less than
10% of the 4-grams occurring in sentences at the end of the
document, were seen in previous passages. The effect of
the low repetitiveness of the document is also reflected on
the corpus-level evaluation (see Table 3), where adding the
indoc phrase table only improves performance by +0.9 BP,
which compares poorly with the (+2.2 BP) improvement ob-
served for book1. In this situation, parameter tuning does
not always improve translation performance (only in 11 out
of 15 sentence groups), and sometimes even proves detri-
mental to translation quality (see Figure 6b). This result may
be related to overfitting issues and suggests to use more so-
phisticated online adaptation strategies.

Finally, on php, the results are much clearer. As shown
in Figure 7a, the php document has a very high repetition
rate. The effect of such a high repetition rate is directly re-
flected on the translation results shown in Figure 7b, where
the +indoc system improves very quickly along with the

12For example, the sentences 201 to 300 are decoded with the parameters
which are tuned on the sentences 101 to 200.
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Figure 7: Experimental results on the php document.

number of translated sentences, and the improvement is very
large. With tuned parameters, the system could better take
advantage of the indoc phrase table, and the results are fur-
ther improved.

In this series of experiments, we have demonstrated that
our framework can quickly construct SMT systems and in-
crementally adapt them to the target domain, even though the
input texts are completely unknown. Its on-demand training
character makes it possible to immediately produce transla-
tion output, even though the translation quality at the begin-
ning is not very competitive. Also, its incremental adaptation
scheme quickly improves its performance, especially on long
and repetitive documents.

4. Related Work
Our framework provides an innovative methodology that is
also suitable for interactive MT: we measured wall clock
times of less than 1 minute (before any cache is available)
to build translation tables for individual sentences, making it
practical to integrate system development within interactive
human post-editing.

Interactive Machine Translation (IMT) was pioneered by
projects such as TransType [18], where an SMT system as-
sists the human translator by proposing translation comple-
tions that the translator can accept, modify or ignore. IMT
was later further developed to enable more types of interac-
tion [19, 20] and to integrate the result of the interaction to
influence future choices of the system. More recently, on-
line learning was introduced in the IMT framework [21] to
improve the exploitation of the translator’s feedback.

A similar idea was also presented in [22]. In this work,
the input document is processed sentence by sentence. Af-
ter the translation of each sentence, the MT output and the
post-edited translation are analyzed and used to extract post-
editing rules. These rules are then used to automatically pro-
cess the MT output so as to improve the quality of output
translations.

5. Conclusion
This work has addressed the issue of how the computation-
ally expensive cost of the development of high-performance
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SMT systems, which typically exploit very large quantities
of data, can be significantly reduced. By using our incremen-
tal strategies, reductions of computation time up to 36 times
were obtained relative to a state-of-the-art system trained in
a conventional fashion. Fast integration of newly available
data in conjunction with online tuning allowed us to quickly
reach the same performance as a strong baseline.

We lastly want to underline that scenarios based on the
+spec characteristic make simpler assumptions than tradi-
tional interactive MT (e.g. [18, 19, 21]), as parameter updates
are synced to the stream of incoming documents. In addition,
as illustrated in Section 3.3, the on-demand strategy is also
capable to perform the more fine-grained scenario of interac-
tive MT, with the distinguishing characteristics that the MT
system does not even need to exist before its actual use.
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NAACL-HLT, Montréal, Canada, 2012, pp. 427–436.

[13] K. Papineni, S. Roukos, T. Ward, and W.-J. Zhu,
“BLEU: a method for automatic evaluation of ma-
chine translation,” in Proceedings of ACL, Philadelphia,
USA, 2002, pp. 311–318.

[14] M. Snover, B. Dorr, R. Schwartz, L. Micciulla, and
J. Makhoul, “A study of translation edit rate with tar-
geted human annotation,” in Proceedings of AMTA,
Boston, USA, 2006, pp. 223–231.

[15] A. Levenberg and M. Osborne, “Stream-based ran-
domised language models for SMT,” in Proceedings of
EMNLP, Singapore, 2009, pp. 756–764.

[16] M. Denkowski, C. Dyer, and A. Lavie, “Learning from
post-editing: Online model adaptation for statistical
machine translation,” in Proceedings of EACL, Gothen-
burg, Sweden, 2014, pp. 395–404.

[17] P. Koehn and J. Schroeder, “Experiments in domain
adaptation for statistical machine translation,” in Pro-
ceedings of WMT, Prague, Czech Republic, 2007, pp.
224–227.

[18] P. Langlais, G. Foster, and G. Lapalme, “TransType: a
computer-aided translation typing system,” in Proceed-
ings of NAACL-ANLP, Seattle, USA, 2000, pp. 46–51.

[19] S. Barrachina, O. Bender, F. Casacuberta, J. Civera,
E. Cubel, S. Khadivi, A. Lagarda, H. Ney, J. Tomás,
E. Vidal, and J.-M. Vilar, “Statistical approaches to
computer-assisted translation,” Computational Linguis-
tics, vol. 35, no. 1, pp. 3–28, Mar. 2009.

[20] P. Koehn, “A web-based interactive computer aided
translation tool,” in Proceedings of the ACL-IJCNLP
Software Demonstrations, Singapore, 2009, pp. 17–20.

[21] D. Ortiz-Martı́nez, I. Garcı́a-Varea, and F. Casacu-
berta, “Online learning for interactive statistical ma-
chine translation,” in Proceedings of HLT-NAACL, Los
Angeles, USA, 2010, pp. 546–554.

221

Proceedings of the 11th International Workshop on Spoken Language Translation
Lake Tahoe, December 4th and 5th, 2014



[22] M. Simard and G. Foster, “Pepr: Postedit propagation
using phrase-based statistical machine translation,” in
Proceedings of MT Summit, Nice, France, 2013, pp.
191–198.

222

Proceedings of the 11th International Workshop on Spoken Language Translation
Lake Tahoe, December 4th and 5th, 2014



Lexical Translation Model Using A Deep Neural Network Architecture

Thanh-Le Ha, Jan Niehues, Alex Waibel

International Center for Advanced Communication Technologies - InterACT
Institute of Anthropomatics and Robotics

Karlsruhe Institute of Technology, Germany
{thanh-le.ha|jan.niehues|alex.waibel}@kit.edu

Abstract

In this paper we combine the advantages of a model using
global source sentence contexts, the Discriminative Word
Lexicon, and neural networks. By using deep neural net-
works instead of the linear maximum entropy model in the
Discriminative Word Lexicon models, we are able to lever-
age dependencies between different source words due to the
non-linearity. Furthermore, the models for different target
words can share parameters and therefore data sparsity prob-
lems are effectively reduced.

By using this approach in a state-of-the-art translation
system, we can improve the performance by up to 0.5 BLEU
points for three different language pairs on the TED transla-
tion task.

1. Introduction
Since the first attempt to statisical machine translation (SMT)
[1], the approach has drawn much interest in the research
community and huge improvements in translation quality
have been achieved. Still, there are plenty of problems in
SMT which should be addressed. One is that the translation
decision depends on a quite small context.

In standard phrase-based statistical machine translation
(PBMT) [2], the two main components are the translation
and language models. The translation model is modeled by
counting phrase pairs, which are sequences of words ex-
tracted from bilingual corpora. By using phrase segments
instead of words, PBMT can exploit some local source and
target contexts within those segments. But no context in-
formation outside the phrase pairs is used. In an n-gram
language model, only a context of up to n target words is
considered.

Several directions have been proposed to leverage in-
formation from wider contexts in the phrase-based SMT
framework. For example, the Discriminative Word Lexicon
(DWL) [3][4] exploits the occurence of all the words in the
whole source sentence to predict the presence of words in the
target sentence. This wider context information is encoded
as features and employed in a discriminative framework.
Hence, they train a maximum entropy (MaxEnt) model for
each target word.

While this model can improve the translation quality in
different conditions, MaxEnt models are linear classifiers.
On the other hand, hierarchical non-linear classifiers can
model dependencies between different source words better
since they perform some abstraction over the input. Hence,
introducing non-linearity into the modeling of the lexical
translation could improve the quality. Moreover, since many
pairs of source and target words co-occur only rarely, a way
of sharing information between the different classifiers could
improve the modeling as well.

In order to address these issues, we developed a discrim-
inative lexical model based on deep neural networks. Since
we train one neural network for all target words as a mul-
tivariate binary classifier, the model can share information
between different target words. Furthermore, the probabil-
ity is no longer a linear combination of weights depending
on the surface source words. Thanks to the non-linearity, we
are now able to exploit semantic dependencies among source
words.

This paper is organized as follows. In Section 2, we re-
view the previous works related to lexical translation meth-
ods as well as the translation modeling using neural net-
works. Then we describe our approach including the network
architecture and its training procedures in Section 3. Sec-
tion 4 provides experimental results of our translation sys-
tems for different language pairs using the proposed lexical
translation model. Finally, the conclusions are drawn in Sec-
tion 5.

2. Related work
Since the beginnings of SMT, several approaches to increase
the context used for lexical decisions have been presented.
When moving from word-based to phrase-based SMT [2][5],
a big step in employing wider contexts into translation sys-
tems has been made. In PBMT, the lexical joint models al-
low us to use local source and target contexts in the form of
phrases. Lately, advanced joint models have been proposed
to either enhance the joint probability model between source
and target sides or engage more suitable contexts.

The n-gram based approach [6] directly models the joint
probability of source and target sentences from the condi-
tional probability of a current n-gram pair givens sequences
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of previous bilingual n-grams. In [7], this idea is introduced
into the phrase-based MT approach. Thereby, parallel con-
text over phrase boundaries can be used during the transla-
tion.

Standard phrase-based or n-gram translation models are
basically built upon statistical principles such as Maximum
Entropy and smoothing techniques. Recently, joint models
are learned using neural networks where non-linear transla-
tion relationships and semantic generalization of words can
be performed [8]. Le et. al. [9] follow the n-gram transla-
tion direction but model the conditional probability of a tar-
get word given the history of bilingual phrase pairs using a
neural network architecture. They then use their model in a
k-best rescorer instead of in their n-gram decoder. Devlin
et. al. [10] add longer source contexts and renew the joint
formula so that it can be included in a decoder rather than a
k-best rescoring module. Schwenk et. al. [11] calculate the
conditional probability of a target phrase instead of a target
word given a source phrase.

Although the aforementioned works essentially augment
the joint translation model, they have an inherent limitation:
only exploit local contexts. They estimate the joint model us-
ing sequences of words as the basic unit. On the other hand,
there are several approaches utilizing global contexts. Moti-
vated by Bangalore et. al [12], Hasan et. al. [13] calculate the
probability of a target word given two source words which do
not necessarily belong to a phrase. Mauser et. al. [3] sug-
gest another lexical translation approach, named Discrimina-
tive Word Lexicon (DWL), concentrating on predicting the
presence of target words given the source words. Niehues
et. al. [4] extend the model to employ the source and target
contexts, but they used the same MaxEnt classifier for the
task. Carpuat et. al. [14] is the most similar work to the
DWL direction in terms of using the whole source sentence
to perform the lexical choices of target words. They treat the
selection process as a Word Sense Disambiguation (WSD)
task, where target words or phrases are WSD senses. They
extract a rich feature set from the source sentences, includ-
ing source words, and input them into a WSD classifier. Still,
the problem persists since they use the shallow classifiers for
that task.

Considering the advantages of non-linear models men-
tioned before, we opt for using deep neural network archi-
tectures to learn the DWL. We take the advantages of the two
directions. On one side, our model uses a non-linear classi-
fication method to leverage dependencies between different
source sentences as well as its semantic generalization abil-
ity. On the other side, by employing the global contexts, our
model can complement joint translation models which use
the local contexts.

3. Discriminative lexical translation using
deep neural networks

We will first review the original DWL approach described in
[3] and [4]. Afterwards, we will describe the neural network

architecture and training procedures proposed in this work.
We will finish this section by describing the integration into
the decoding process.

3.1. Original Discriminative Word Lexicon

In this approach, the DWL are modeled using a maximum
entropy model to determine the probability of using a target
word in the translation. Therefore, individual models for ev-
ery target word are trained. Each model is trained to return
the probability of this word given the input sentence.

The input of the model is the source sentence, thus, they
need a way to represent the input sentence. This is done by
representing the sentence as a bag of words and thereby ig-
noring the order of the words. In the MaxEnt model, they
use an indicator feature for every input word. More formally,
a given source sentence s = s1 . . . sI is represented by the
features F (s) = {fw(s) : ∀w ∈ Vs}, with Vs is the source
vocabulary:

fw(s) =

{
1 if w ∈ s
0 if w /∈ s

(1)

The models are trained on examples generated by the par-
allel training data. The labels for training the classifier of
target word tj are defined as follows:

labeltj (s, t) =

{
1 if tj ∈ t
0 if tj /∈ t

(2)

This model approximates the probability p(tj |s) of a target
word tj given the source sentence s. We will discuss our
alternative method using neural network to estimate those
probabilities in the next section.

In [4], the source context is considered in a way that the
sentence is no longer represented by a bag of words, but by
a bag of ngrams. Using this representation, they could inte-
grate the order information of the words, but the dimension
of the input space is increased. We also adapt this extension
to our model by encoding the bigrams and trigrams as ordi-
nary words in the source vocabulary.

After inducing the probability for every word tj given the
source sentence s, these probabilities were combined into the
probability of the whole target sentence t = t1 . . . tJ given s
as described in Section 3.4.

3.2. General network architecture

After we reviewed the original DWL in the last section, we
will now describe the neural network that replaces the Max-
Ent model for calculating the probabilities p(tj |s).

The input and output of our neural network-based DWL
are the source and target sentences from which we would like
to learn the lexical translation relationship. As in the origi-
nal DWL approach, we represent each source sentence s as
a binary column vector ŝ ∈ {0|1}|Vs| with Vs being the con-
sidered vocabulary of the source corpus. If a source word si
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Figure 1: FFNN architecture for learning lexical translation.

appears in that sentence s, the value of the corresponding in-
dex i in ŝ is 1, and 0 otherwise. Hence, the source sentence
representation should be a sparse vector, depending on the
considered vocabulary Vs. The same representation scheme
is applied to the target sentence t to get a sparse binary col-
umn vector t̂ with the considered target vocabulary Vt.

As the Figure 1 depicts, our main neural network-based
DWL architecture for learning lexical translation is a feed-
forward neural network (FFNN) with three hidden layers.
The matrix W(1) ∈ RVs×|H1| connects the input layer to
the first hidden layer. Two matrices W(2) ∈ R|H1|×|H2| and
W(3) ∈ R|H2|×|H3| encodes the learned translation mapping
between two compact global feature spaces of the source and
target contexts. And the matrix W(4) ∈ R|H3|×|Vt| computes
the lexical translation output. |H1|, |H2|, and |H3| are the
number of units in the first, second and third hidden layers,
respectively. The lexical translation distribution of the words
in the target sentence p(ti|s) for a given source sentence s is
computed by a forward pass:

p(ti|s) = σi(W
(4)TO(3))

where:

O(k) =
[
σj(W

(k)TO(k−1))
]

k ∈ {1, 2, 3}

O(0) = ŝ and O(4) = p(t, s)

and σj is the sigmoid function σ(x) applied to the jth value
in a column vector:

σ(x) =
1

1 + e−x

So the parameters of the network are:

θ = (W(1),W(2),W(3),W(4))

To investigate the impact of the network configuration,
we built a simpler architecture with only one hidden layer
featuring the translation relationship between source and tar-
get sentences. We will refer this as the SimNNDWL in the
comparison section later.

3.3. Network training

In neural network training, for each instance, which is com-
prised of a sentence pair (s, t), we maximize the similarity
between the conditional probability pi = pθ(ti|s) to either 1
or 0 depending on the appearance of the corresponding word
ti in the target sentence t. The neural network operates as a
multivariate classifier which gives the probabilistic score for
a binary decision of independent variables, i.e the appear-
ances of target words. Here we minimize the cross entropy
error function between the binary target sentence vector t̂
and the output of the network p =

[
pi
]
:

E = − 1

Vt

Vt∑

i=1

(̂ti ln pi + (1− t̂i) ln(1− pi))

We train the network by back-propagating the error based
on the gradient descent principle. The error gradient for the
weights between the last layer and the output is calculated as:

∂E

∂w
(4)
ij

= (O
(4)
j − t̂j)O

(3)
i

The error gradient for the weights between the other lay-
ers is calculated based on the error gradients for activation
values from the previous layers:

∂E

∂w
(k)
ij

=
∂E

∂O
(k)
j

O
(k−1)
i

Then the weight matrices are batch-updated after each
epoch:

W(k)[T + 1] = W(k)[T ]− η
N∑

i=1

∂E

∂W(k)

where:

• N is the number of training instances.

• η is the learning rate of the network.

• W(k)[T + 1] is the weight matrix of the layer k after
T + 1 epochs of training.

3.4. Sentence-level lexical translation scoring

With the independence assumption among target words, the
target probabilities are combined to form the sentence-level
lexical translation score:

p(t|s) =
∏

tj∈vt

p(tj |s) (3)

where vt is the set of all target words appearing in the target
sentence t.

In Equation 3, we need to update the lexical translation
score only if a new word appears in the hypothesis. That
means we do not take into account the frequency of words
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but multiply the probability of one word only once even if
the word occurs several times in the sentence. Other models
in our translation system, however, will restrict overusing a
particular word. Furthermore, to keep track of which words
whose probabilities have been calculated already, additional
book keeping would be required. In order to avoid those dif-
ficulties, we come up with the following approximation given
J is the length of the target sentence t:

p(t|s) =
J∏

j=1

p(tj |s) (4)

In order to speed up the calculation of the target word
probabilities, we pre-calculate all probabilities for a given
source sentence prior to translations. In a naive approach we
would need to pre-calculate the probabilities for all possible
target words given the source sentence. This would lead to a
very slow calculations. Therefore, we first define the target
vocabulary of a source sentence as the vocabulary comprised
of the respective words from the phrase pairs matching to the
source sentence. Using this definition, we only need to pre-
calculate the probabilities of all words in the target side of
the phrase table and not all target words in the whole corpus.
And we can calculate the score for every phrase pair even
before starting with the translation.

4. Experiments
In this section, we describe the translation system we use for
the experiments, the configurations of the NNDWL and the
results of those experiments.

4.1. System description

The system we use as our baseline is a state-of-the-art trans-
lation system for English to French without any DWL. To the
baseline system, we add several DWL components trained
on different corpora as independent features in the log-linear
framework utilized by our in-house phrase-based decoder.

The system is trained on the EPPS, NC, Common Crawl,
Giga corpora and TED talks[15]. The monolingual data we
used to train language models includes the corresponding
monolingual parts of those parallel corpora plus News Shuf-
fle and Gigaword. The data is preprocessed and the phrase
table is built using the scripts from the Moses package [16].
We adapt the general, big corpora to the in-domain TED data
using the Backoff approach described in [17]. Adaptation is
also conducted for the monolingual data. We train a 4-gram
language model using the SRILM toolkit [18]. In addition,
several non-word language models are included to capture
the dependencies between source and target words and re-
duce the impact of data sparsity. We use a bilingual language
model as described in [7] as well as a cluster language model
based on word classes generated by the MKCLS algorithm
[19]. Short-range reordering is performed as a preprocessing
step as described in [20].

Our in-house phrase-based decoder is used to search for
the best solutions among translation hypotheses and the op-
timization of the 13 to 17 features, depending on the settings
we use, is performed using Minimum Error Rate Training
[21]. The weights are optimized and tested on two separate
sets of TED talks. The development set consists of 903 sen-
tences containing 20k words. The test set consists of 1686
sentences containing 33k words.

We investigate the impact of our approach by employ-
ing different configurations of the neural networks described
in details in the following section. We then evaluate those
configurations not only for English→French but also for
English→Chinese and German→English with similar trans-
lation system setups.

Our NNDWL models are trained on a small subset of the
mentioned training corpora, mainly the TED data. Although
the TED corpus is quite small compared to the overall
training data, it is very important since it matches best the
test data. In order to speed up the process of testing different
configurations, we therefore train the NNDWL only on this
corpus except for the comparison reported in Section 4.3.4.
The statistics of the training and validation data for the
NNDWL are shown in Table 1.

En-Fr En-Zh De-En

Training Sent. 149991 140006 130654
Tok. (avg.) 3.1m 3.3m 2.5m

Validation Sent. 6153 8962 7430
Tok. (avg.) 125k 211k 142k

Table 1: Statistics of the corpora used to train NNDWL

4.2. Network configurations

In our main neural network architecture we proposed, the
sizes of the hidden layers |H1|, |H2|, |H3| are 1000, 500,
1000, respectively. If we use the original source and tar-
get vocabularies, for the English→French direction trained
on preprocessed TED 2013 data, Vs includes 47957 words
and Vt includes 62660 words. Because of the non-linearity
calculations through such a large network, the training is ex-
tremely time-consuming. In order to boost the efficiency, we
limit the source and target vocabularies to the most frequent
ones. All words outside the lists are treated as unknown
words. We vary the size of the considered vocabularies from
the values {500, 1000, 2000, 5000} while keeping the sizes
of the hidden layers the same (i.e. 1000 × 500 × 1000). In
preliminary experiments, this layout lead to the best perfor-
mance. So we used this layout for the remaining of the paper.

The same calculation problem occurs with the source
contexts, even more seriously due to the curse of dimen-
tionality. Hence, we applied the same cut-off scheme to the
source-side bigrams and trigrams with the most-frequent bi-
gram and trigram numbers set at (200, 100), (500, 200) and
(1000, 500).

226

Proceedings of the 11th International Workshop on Spoken Language Translation
Lake Tahoe, December 4th and 5th, 2014



The simpler architecture SimNNDWL consisting of one
1000-unit hidden layer is compared to the main architecture
with the same setup.

For training our proposed architecture, the gradient de-
scent with a batch size of 15 and a learning rate of 0.02 is
used. Gradients are calculated by averaging across a mini-
batch of training instances and the process is performed for
35 epochs. After each epoch, the current neural network
model is evaluated on a separate validation set, and the model
with the best performance on this set is utilized for calculat-
ing lexical translation scores afterwards. We regularize the
models with the L2 regularizer. As an alternative to the L2,
we also experiment with the dropout technique [22], where
the neurons in the last hidden layer are randomly dropped out
with the probability of 0.4. However, it did not help as indi-
cated by its performance on the system later. The training is
done on GPUs using the Theano Toolkit[23].

4.3. Results

Here we report the results using different NNDWL config-
urations mainly for an English→French translation system.
We also report the results using the best configurations for
other language pairs.

4.3.1. Experiments with different vocabulary sizes

The results of the English→French translation system with
NNDWL models trained with different vocabulary sizes are
shown in Table 2.

System (En-Fr) BLEU ∆BLEU
Baseline 31.94 –
MaxEnt DWL 32.17 +0.23
NNDWL 500 32.06 +0.12
NNDWL 1000 32.37 +0.43
NNDWL 2000 32.38 +0.44
NNDWL 5000 32.07 +0.13
Full NNDWL 32.06 +0.12

Table 2: Results of the English→French NNDWL.

Varying the vocabulary sizes for both source and target
sentences not only helps to dramatically reduce neural net-
work training time but also affects the translation quality. In
our experiments, neural networks with 1000- and 2000-most-
frequent-word vocabularies show the biggest improvements
with around 0.44 BLEU points in translating from English to
French. They perform better than the DWL using the max-
imum entropy approach and the NNDWL with the whole
source and target vocabularies.

While all NNDWL models achieve notable BLEU gains
compared to the strong baseline, some of them are worse than
the original MaxEnt model. It might be due to the fact that
the original MaxEnt model uses the source contexts whereas
the NNDWL models uses just the source words.

4.3.2. The impact of n-gram source contexts

Tables 3 and 4 show the impact of bigrams and trigrams ex-
tracted from source sentences. We also vary the numbers of
the bigrams and trigrams which appeared most often.

System (En-Fr) BLEU ∆BLEU
Baseline 31.94 –
NNDWL 2000 32.38 +0.44
NNDWL 2000 SC-200-100 32.35 +0.41
NNDWL 2000 SC-500-200 32.44 +0.50
NNDWL 2000 SC-1000-500 32.36 +0.42

Table 3: Results of the 2000-NNDWL with source contexts.

For the NNDWL model with 2000-most-frequent-word
vocabularies, including source contexts helps in some cases
and does not harm the translation performance in the other
cases. With the 500 most-frequent bigrams and 200 most-
frequent trigrams, we achieve the best improvements of 0.5
BLEU points over the baseline.

System (En-Fr) BLEU ∆BLEU
Baseline 31.94 –
NNDWL 1000 32.37 +0.43
NNDWL 1000 SC-200-100 32.01 +0.07
NNDWL 1000 SC-500-200 32.23 +0.29
NNDWL 1000 SC-1000-500 32.39 +0.45

Table 4: Results of the 1000-NNDWL with source contexts.

The gains from adding source contexts to the 1000-
vocabulary-size NNDWL model are not clearly observed as
in the case of the 2000-vocabulary-size model. This might in-
dicate that we should set the numbers of the source contexts
to be proportional somehow with the size of the vocabularies.

4.3.3. The impact of using different architectures

System (En-Fr) BLEU ∆BLEU
Baseline 31.94 –
NNDWL 1000 32.37 +0.43
SimNNDWL 1000 32.12 +0.18
NNDWL 2000 32.38 +0.44
SimNNDWL 2000 32.29 +0.35
NNDWL 5000 32.07 +0.13
SimNNDWL 5000 31.71 -0.23

Table 5: Results of NNDWL and SimNNDWL architectures.

Here we compare our main architecture with the simpler
architecture SimNNDWL consisting of one 1000-unit hidden
layer. While the SimNNDWL trains faster (157 hours vs. 202
hours for training English→French with the whole vocab-
ularies), translation time performance is not significantly af-
fected. Since there are decreases in BLEU score using SimN-
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NDWL architecture as shown in Table 5, the deep architec-
ture seems to have an advantage over the simple architecture.
Hence, we stick with our main architecture for remaining ex-
periments.

4.3.4. The impact of data used to train NNDWL models

We also train our NNDWL models on a bigger corpus con-
catinating EPPS, NC and TED. The results in Table 6 shows
that using a bigger corpus does not improve the translation
quality. The DWL models trained on in-domain data only,
i.e. TED, perform similar or better than the models trained
on more data but broader domains. This observation also
holds true for original the MaxEnt DWL models reported in
[24].

System (En-Fr) BLEU ∆BLEU
Baseline 31.94 –
NNDWL 1000 on TED 32.37 +0.43
NNDWL 1000 on EPPS+NC+TED 32.33 +0.39

Table 6: Results of the NNDWL trained on different corpora.

4.3.5. Other language pairs

We conducted the experiments with NNDWL models mainly
on our English-to-French translation system in order to inves-
tigate the impact of our method on a strong baseline. How-
ever, we would like to inspect the effect of the DWL on lan-
guage pairs with long-range dependencies or differences in
word order.

For that purpose, we built similar NNDWL models and
integrate them to our translation systems for other language
pairs. Tables 7 and 8 show the results of English→Chinese
and German→English, respectively.

English→Chinese

System (En-Zh) BLEU ∆BLEU
Baseline 17.18 –
MaxEnt DWL 16.78 -0.40
NNDWL 500 17.09 -0.09
NNDWL 1000 17.58 +0.40
NNDWL 1000 SC-200-100 17.63 +0.45
NNDWL 2000 17.26 +0.08
NNDWL 2000 SC-200-100 17.20 +0.02

Table 7: Results of the English→Chinese NNDWL

In case of the English→Chinese direction, the NNDWL
significantly improves the translation quality, with an
increment of 0.45 BLEU points over the baseline. That
best BLEU gain comes from the NNDWL with 1000-
most-frequent-word vocabularies and the source contexts
containing 200 bigrams and 100 trigrams.

German→English

In case of the German→English direction, the NNDWL
also helps to gain 0.34 BLEU points over the baseline with
the best model (i.e. 2000 most-frequent-word vocabular-
ies with source contexts). However, the improvements is
not notably different compared to the original MaxEnt DWL.

System (De-En) BLEU ∆BLEU
Baseline 29.70 –
MaxEnt DWL 29.95 +0.25
NNDWL 500 29.82 +0.12
NNDWL 1000 29.92 +0.22
NNDWL 2000 29.95 +0.25
NNDWL 2000 SC-500-200 30.04 +0.34
NNDWL 5000 29.89 +0.19

Table 8: Results of the German→English NNDWL

5. Conclusion
In this paper we described a deep neural network approach
for DWL modeling and the integration into a standard
phrase-based translation system. Using neural networks as
a non-linear classifier for DWL enables the ability of learn-
ing the abstract representation of global contexts and their
dependencies. We investigated various network configura-
tions on different language pairs. When we deployed our
best NNDWL model as a feature in our decoder, it helps to
improve up to 0.5 BLEU points compared to a very strong
baseline.

Our NNDWL does not require linguistic resources nor
feature engineering. Thus, it can easily be ported to new lan-
guages. Furthermore, the probability calculation can be done
in a preprocessing step. Therefore, the new model would not
significantly slow down the translation process. Although we
do not feature linguistic resources in our NNDWL, they can
be useful in modeling the translation probability of the lan-
guages from which they are avalaible. In future work we will
try to integrate linguistic features into the model. Moreover,
context vector of words might be helpful in further reducing
the data sparseness problem.
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Abstract
Conversational spoken language translation (CSLT) systems
facilitate bilingual conversations in which the two partici-
pants speak different languages. Bilingual conversations pro-
vide additional contextual information that can be used to im-
prove the underlying machine translation system. In this pa-
per, we describe a novel translation model adaptation method
that anticipates a participant’s response in the target lan-
guage, based on his counterpart’s prior turn in the source lan-
guage. Our proposed strategy uses the source language utter-
ance to perform cross-language retrieval on a large corpus of
bilingual conversations in order to obtain a set of potentially
relevant target responses. The responses retrieved are used
to bias translation choices towards anticipated responses. On
an Iraqi-to-English CSLT task, our method achieves a sig-
nificant improvement over the baseline system in terms of
BLEU, TER and METEOR metrics.

1. Introduction
State of the art conversational spoken language translation
(CSLT) systems enable useful, functional communication
between two subjects who do not speak the same language.
In a typical CSLT pipeline, source language speech is tran-
scribed using automatic speech recognition (ASR), piped to
text-to-text statistical machine translation (SMT), followed
by text-to-speech (TTS) synthesis in the target language.
Two sets of these components are used; one in the source-
to-target direction and another in the target-to-source direc-
tion. The two directions are typically processed indepen-
dently, where successive turns in the source and target lan-
guages are processed in complete isolation. This decoupling
sometimes leads to contextually inappropriate translations.

Fortunately, bilingual conversations offer a wealth of
contextual information that can be exploited to improve
translation performance. Contextual cues can be used to

This research was developed with funding from the Defense Advanced
Research Projects Agency (DARPA). The views, opinions, and/or findings
contained in this article are those of the authors and should not be interpreted
as representing the official views or policies of the Department of Defense
or the U.S. Government.
Approved for Public Release, Distribution Unlimited

adapt the translation model and improve its relevance to the
current state of the dialogue. Typically, the adaptation is done
monolingually, using only the utterances of one speaker. In
this paper, we describe a novel translation model adaptation
technique for bilingual conversations that anticipates a par-
ticipant’s response in the target language based on his coun-
terpart’s prior turn in the source language. Depending on
the nature of the bilingual conversation, adaptation can be
profitably performed in either language. We evaluate the
proposed approach on Iraqi-English bilingual conversations
drawn from the DARPA TransTac/BOLT spoken dialogue
collection.

Our approach is motivated by the observation that in most
domains, the primary goal of bilingual conversations is to
exchange information across the language barrier. To that
end, the most useful translation is often the one that most ef-
fectively conveys the content of a speaker’s response to the
content of the counterpart’s preceding utterances. Table 1
illustrates this with an excerpt from an Iraqi-English bilin-
gual conversation at a vehicle checkpoint from the DARPA
TransTac/BOLT corpus. The first column corresponds to
the English speaker’s turn; the second column is the Iraqi
speaker’s following turn, or response (in Buckwalter translit-
eration); the third column provides an English gloss of the
Iraqi speaker’s response. As in most cooperative conversa-
tions, the Iraqi responses are all relevant to the preceding En-
glish turn, and, in many cases, largely predictable from the
preceding English turn in the first column.

Following these observations, we perform turn-level
translation model adaptation that prefers phrasal translation
rules that originate from responses that immediately follow
counterpart utterances that are similar to those of the cur-
rent conversational counterpart. This approach produces a
measurable improvement over a phrase-based SMT baseline
system in terms of BLEU, TER and METEOR metrics on an
Iraqi-to-English translation task.

2. Anticipatory Translation Model Adaptation
Our adaptation scheme attempts to model the effect of the
preceding target language turn on the translation of the cur-
rent source language utterance. The intuition is that biasing
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N English Turn Iraqi Response English Gloss of Iraqi Response
1. turn off your engine and get out of the car tfDlwA here you are
2. give me your i d bTAqty wjwAzy my i d card and my passport
3. where you coming from mn swryA mn dyr Alzwr from syria from dair al-zour
4. and where you going rAyH llrmAdy i’m going to ramadi
5. what’s in your truck Iny bqAl wdJjyb xs JbyEh hnAk i’m a grocer and i’m bringing lettuce

Table 1: Excerpt from an Iraqi-English bilingual conversation in the DARPA TransTac/BOLT collection.

the translation model to favor phrase pairs originating from
training utterances that have similar preceding target lan-
guage turn will produce translations more appropriate to the
current conversation. Such a model can be learned in a data-
driven fashion from a large training corpus of bilingual con-
versations, organized in the form of starting target language
turns and ensuing source language responses. The DARPA
TransTac/BOLT spoken dialogue corpus is organized as a
collection of bilingual conversations, thus making it rela-
tively simple to build an “anticipatory parallel corpus” (APC)
of target language turn and source language response pairs
for training the translation model (see Section 3). The APC
is a pseudo-parallel corpus with prior target turns mapping to
the immediately following source language responses, sim-
ilar to the first two columns of Table 1. In the following
description, we assume, without loss of generality, that we
are performing cross-lingual translation model adaptation for
translating the current Iraqi turn into English based on the
preceding English turn. Figure 1 illustrates the adaptation
process.

2.1. Cross-Lingual Retrieval

When decoding the current Iraqi utterance in the context of a
bilingual conversation, we seek to predict what an appropri-
ate response to the preceding English turn might look like.1

To find support for this prediction, we use the preceding En-
glish turn as a query to perform cross-lingual retrieval on the
APC constructed from the training conversations. The goal
of this step is to obtain the most relevant Iraqi responses to
the preceding English turn. Each training utterance pair in
the APC is assigned a unique utterance ID, which we later
use in the online adaptation of the translation model (Section
2.2).

Because the APC is not a true parallel corpus in the sense
that the Iraqi responses are not direct translations of the pre-
ceding English turns, learning a true cross-lingual retrieval
model from this data would be difficult. Instead, we em-
ployed the simpler approach of first performing monolingual
retrieval of the English turns most similar to the query turn,
and then reading off the corresponding Iraqi responses from
the APC. To facilitate this, we represent all APC English
turns in a trigram term-indicator vector space with appropri-

1In an interactive CSLT system, all utterances by speakers of both lan-
guages are transcribed by speech recognition (ASR), though we also run
oracle experiments with the ground truth (reference) transcription.

ate pre-processing (e.g. stop-word removal), and we index
each training utterance separately. During retrieval, we map
the preceding English turn to the same vector space, and se-
lect APC English turns that have the largest cosine similarity
to the query. We then read off the corresponding Iraqi re-
sponse turns from the APC. This produces a bias corpus of
Iraqi responses that might be relevant to the preceding En-
glish turn, which we limit to a small number between 50 and
500 in our experiments.

Table 2 illustrates anticipatory cross-lingual retrieval
with an example. The first row corresponds to the query
English turn. The first column of the second row lists the
five top-ranking Iraqi responses retrieved from the APC us-
ing the above mechanism. The second column of the sec-
ond row provides an English gloss for the retrieved Iraqi re-
sponses. The final row shows the actual Iraqi response to the
query English turn, and its English gloss. In this example, the
retrieved Iraqi responses are well-matched to the actual re-
sponse. Thus, a translation model biased towards the phrases
extracted from the retrieved responses is likely to produce
better translations.

Q. how are you doing today
1. wAllh AlHmd llh zyn well fine thank god
2. SbAH Alnwr JhlAF

wshlAF
good morning hello and
welcome

3. JhlAF byk kyf AlHAl hello to you how are you
4. SbAH Alxyr JhlAF wsh-

lAF AlHmd llh zyn
good morning and wel-
come thank god i’m well

5. Iny zyn JHsn mn Endh i’m fine better than him
R. AlHmd llh zyn good thank god

Table 2: Iraqi response retrieval for a sample English query
turn.

2.2. Translation Model Adaptation

From the cross-lingual retrieval on each previous English
turn, we obtain for each Iraqi turn I , a set of anticipated
Iraqi responses, corresponding Iraqi utterance IDs and a set
of similarity scores (cosine similarity between the query En-
glish turn and APC English turns) R. We use these scores di-
rectly as relevance scores for the anticipatory Iraqi responses.
At run time, an updated relevance vector is passed on to the
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Figure 1: Anticipatory translation model adaptation process.

SMT decoder for each new test utterance.
The SMT phrase table tracks, for each phrase pair, the set

of training utterances from which that phrase pair originated.
Only part of the training corpus has marked conversation
boundaries. Phrase translation rules derived from sentence
pairs that do not originate in bilingual conversations are as-
signed a default utterance ID. For each candidate phrase pair
I → E added to the search graph, the SMT decoder com-
putes the relevance score as the maximum of all relevance
scores corresponding to the current turn. i.e.

FI→E = max
j∈Par(I→E)

Rj (1)

where Par(I → E) is the set of training utterances from
which the candidate phrase pair originated. Phrase pairs
with the default utterance ID are assigned a default relevance
score of 0.0. (in effect, they are decoded with the baseline
features only). The relevance score is added as a feature to
the log-linear translation model with its own weight, which
is tuned with the rest of the parameters. The effect of this
feature is to bias the decoder in favor of phrase pairs that
originate in relevant responses.

3. Baseline SMT System
We use the DARPA TransTac/BOLT Iraqi-English parallel
two-way spoken dialogue collection to train the translation
models. Each conversation represents an interaction between
an English interviewer and an Iraqi respondent, based on
a scenario that requires exchange of specific information.
The English speaker typically plays the role of information
seeker and “drives” the majority of conversations. These
large-vocabulary conversations are spontaneous and free-
form, with few restrictions. This collection consists of a va-
riety of domains including force protection (e.g. checkpoint,

reconnaissance, patrol), medical diagnosis and aid, mainte-
nance and infrastructure, etc; each transcribed from spoken
bilingual conversations and manually translated. The SMT
parallel training corpus contains approximately 773K sen-
tence pairs (7.3M English words). We used this corpus to ex-
tract translation phrase pairs from bidirectional IBM Model 4
word alignment [1] based on the heuristic approach of [2]. A
4-gram target LM was trained on all English transcriptions.
Our phrase-based decoder is similar to Moses [3] and uses
the phrase pairs and target LM to perform beam search stack
decoding based on a standard log-linear model, the parame-
ters of which were tuned with MERT [4] on a held-out de-
velopment set (≈11,000 sentence pairs) using BLEU as the
tuning metric. Finally, we evaluated translation performance
on a separate, unseen test set (≈9,300 sentence pairs). Most
of these conversations between bilingual speakers are medi-
ated through a human interpreter.

Of the 773K training sentence pairs, about 267K origi-
nate in ≈3,000 marked-up bilingual conversations. We use
this subset to construct an anticipatory corpus for the adapta-
tion experiments. These sentence pairs are assigned a unique
utterance ID. All other sentence pairs are assigned to a de-
fault utterance ID, which signals the absence of the antici-
patory relevance feature for phrase pairs derived from these
instances.

4. Experimental Results
We constructed an English-Iraqi APCs from input-response
pairs in the training conversations. For each source language
input turn in the held-out development and test sets, we per-
formed cross-lingual retrieval on the APC to obtain a bias
corpus of potential responses in the target language. We per-
formed retrieval in two configurations: (a) using reference
transcriptions of all utterances in both languages; and (b)
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using ASR transcriptions (both for retrieval and translation)
in both languages. The latter configuration degrades perfor-
mance noticeably, but it matches the conditions of a live de-
ployment. In the Iraqi-English experiments, we test values
of the relevance list size n ∈ {50, 100, 500}.

The Iraqi ASR transcriptions were generated using a two-
pass HMM-based system, which delivered a word error rate
(WER) of 20.2% on the test set utterances. The English ASR
system, which was used to transcribe the counterpart’s utter-
ances had a WER of 10.6%.

The held-out development conversations were used to
tune the size of the bias corpus (i.e the number of retrieved
response turns), as well as the model weights in the log-linear
translation model. Tuning was performed using reference
transcriptions of the Iraqi turn. The optimal settings were
then used to decode the unseen test conversations for both
reference transcriptions and ASR transcriptions.

REFERENCE TRANSCRIPTIONS

SYSTEM BLEU↑ TER↓ METEOR↑
Baseline 31.62 53.32 63.59

n=50 31.73* 53.11* 63.67
n=100 31.82* 53.03* 63.75
n=500 31.80* 53.00* 63.75

ASR TRANSCRIPTIONS

SYSTEM BLEU↑ TER↓ METEOR↑
Baseline 26.93 60.38 58.20

n=50 26.98 60.12 58.21
n=100 27.11* 60.16* 58.26
n=500 27.01 60.06* 58.25

Table 3: Translation results on the test sets. Asterisked re-
sults are significantly better than the baseline (p ≤ 0.05) us-
ing 1,000 iterations of paired bootstrap re-sampling [5]. Best
results for each metric are marked in boldface.

Table 3 summarizes the translation performance of the
test sets in BLEU [6], TER [7] and METEOR [8]. Re-
sults are presented for three configurations of n: 50, 100
and 500. We note that our proposed anticipatory adapta-
tion approach outperforms the baseline across multiple met-
rics, both reference transcriptions and ASR transcriptions. In
many instances, the differences are statistically significant.
The adapted system with 100 retrieval responses (n=100) is
the best scoring system for that test set.

In Table 4 we show example utterances where our adap-
tation approach generates better translation choices. In these
examples, the conversational counterpart’s utterance guides
the retrieval towards contextually relevant matches, which
influence lexical (hence, phrasal) selection (e.g. ‘flight
of stairs’ vs. ‘stairs’ in a conversation about a corridor).
Retrieval-based adaptation can also go awry, as the fourth
example shows. In this example, the brevity of the preceding
English turn leads to imprecise retrieval and an unreliable
bias corpus, which then prefers an incorrect translation for

incidental reasons.
We also compared smoothed, sentence-level BLEU

scores,2 and observed that the the n=100 adapted system
scores higher than the baseline 884 times and lower than the
baseline 763 times.3 We take this as further evidence that
the retrieval-based adaptation leads to small but systematic
improvements in translation quality.

5. Relation to Prior Work
Online model adaptation for SMT has become an active area
of research in recent years. The predominant approach is to
divide the training data into discrete partitions representing
either domains or genres to be adapted to [9, 10] or other
linguistic phenomena of interest, such as whether the current
utterance is a question [11]. At run-time, the domain, genre
or other inferred properties of the current utterance are used
to prefer phrase translation rules that originate in appropriate
training data. By contrast, our approach makes no assump-
tions about the nature of the training data, and therefore re-
quires no hard decisions about training set partitions and no
labor-intensive manual annotation. Instead, we directly re-
trieve exemplars from the training set using lexical cues in
order to guide the anticipatory inference.

To avoid the need for hard decisions about domain
membership, some have used topic modeling to improve
SMT performance, e.g., using latent semantic analysis [12],
‘biTAM’ [13] or latent dirichlet allocation [14, 15, 16]. As it
also avoids data set partitioning and explicit annotation, our
work is in the same spirit as these, but we do not explicitly
model topic distributions.

In our previous work [16], we incrementally accumulated
conversational history to compute a topic distribution vec-
tor. The phrasal translation rules were scored using the max-
imum similarity of the current conversational topic vector to
all of the training conversation topic vectors from which that
phrasal rule was drawn. This work is also incremental, but
in contrast uses only the previous utterance of the conversa-
tional counterpart to retrieve exemplars for similarity com-
parisons. Here, we score phrasal rules using the maximum
similarity of all of the retrieved sentences to any of the sen-
tences from which the phrase pair was drawn.

6. Discussion and Future Directions
Conversational spoken language translation systems offer
rich contextual cues that can be used to improve the MT
performance. This in turn results in more usable, higher
quality CSLT systems that are better able to accomplish
cross-lingual communication goals in a way that is tailored
to the conversation at hand. In this paper, we described a
novel, turn-level anticipatory translation model adaptation
technique where one participant’s turn is used to anticipate,

2As computed by the NIST BLEU script.
3Of the remaining 7,662 utterances, the two systems differ in their trans-

lations of 1,867, even though their BLEU scores do not differ.
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Previous Eng Turn but his temperature how has he been hotter than normal
Baseline his temperature sometimes and his body is very hot
Adaptive his temperature goes up sometimes and his body is very hot
Reference his temperature sometimes goes up and his body becomes very hot
Previous Eng Turn can you see this corridor in front of you
Baseline this is the end there are stairs
Adaptive at the end of it there is a flight of stairs
Reference at the end of it there’s a staircase
Previous Eng Turn if you can’t stop it then that is an emergency situation
Baseline of course they call it the pressure the direct pressure on the wound or continuous
Adaptive of course they call it direct pressure or continuous pressure on the wound
Reference of course they call it direct pressure or continuous pressure on the wound
Previous Eng Turn good
Baseline personally because he is supposed to
Adaptive personally because he is the foundation
Reference to him personally because he is the one concerned [...with the matter]

Table 4: Examples of Iraqi-to-English translations where anticipatory adaptation influences the lexical choice.

and thereby more accurately translate, the other participant’s
response.

The proposed approach used cross-lingual retrieval on
an “anticipatory parallel corpus” of target language turns
and corresponding source language responses to obtain the
most relevant responses to a query turn. The retrieved re-
sponses were used to bias translation options in the trans-
lation model for the subsequent response turn in an Iraqi-
Arabic-to-English translation system. We observed statisti-
cally significant improvements in translation results for most
of the testing conditions, which included both reference and
ASR transcripts of the bilingual test conversations. We also
showed examples where the proposed approach produced
better translations than the baseline system.

In this paper, we demonstrated the usefulness of turn-
level context of bilingual conversations for improving MT
performance. Our next goal is to develop a framework for
integration of fine-grained turn-level translation model adap-
tation with more coarse-grained, globally driven approaches
such as topic-based translation model adaptation, possibly
in a neural-network-based translation model (such as [17])
where diverse sources of information can be combined to
make more informed translation choices. We also plan to ex-
plore ways of detecting unreliable retrieval query input (e.g.,
short preceding conversational turns, as in Table 4) that can
lead to unreliable translation biasing.
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Abstract

Standard SMT decoders operate by translating disjoint spans
of input words, thus discarding information in form of over-
lapping phrases that is present at phrase extraction time. The
use of overlapping phrases in translation may enhance flu-
ency in positions that would otherwise be phrase bound-
aries, they may provide additional statistical support for long
and rare phrases, and they may generate new phrases that
have never been seen in the training data. We show how to
extract overlapping phrases offline for hierarchical phrase-
based SMT, and how to extract features and tune weights for
the new phrases. We find gains of 0.3 − 0.6 BLEU points
over discriminatively trained hierarchical phrase-based SMT
systems on two datasets for German-to-English translation.

1. Introduction
Decoding in SMT amounts to searching for the most prob-
able (Viterbi) derivation of a target string given the source
string. Standard SMT decoders perform at the same time a
search for the optimal segmentation of the source sentence
into disjoint spans of words, which are translated by rules
encoding bi-phrases. This means that irrespective of whether
phrases are contiguous [1], non-contiguous [2, 3], or hierar-
chical [4], the application of phrase rules at decoding time
disallows overlapping words. However, the use of overlap-
ping phrases might have several advantages: First, they may
enhance fluency in positions that would otherwise be phrase
boundaries. Second, overlapping phrases may provide addi-
tional statistical support for long and rare phrases extracted
from the training data. Finally, and most importantly, over-
lapping phrases may constitute new phrases that have never
been seen in the training data but may be applicable to the
test data.

The few approaches that did attempt to integrate overlap-
ping phrases into SMT decoding in the past [5, 6, 7] were
handicapped mostly by the additional decoding complex-
ity. The need to counterbalance exponential growth of the
search space with very restrictive reordering constraints pre-
vented these approaches to be competitive with state-of-the-
art phrase-based SMT. The exception is Tribble et al. [8] who
reported significant gains for using overlapping phrases over

their own baseline. The key idea in this approach is to cir-
cumvent decoder integration and instead to generate overlap-
ping phrases offline, by merging existing contiguous phrases
into longer bi-phrases that have overlapping words in both
source and target.

In this work, we will revive this approach, and extend
it to hierarchical phrases. We show how to merge and fil-
ter overlapping phrases created from hierarchical and non-
hierarchical phrases, and how to extract and tune features for
the new phrases. An experimental comparison with a state-
of-the-art hierarchical phrase-based decoder [9] shows gains
of 0.3 − 0.6 BLEU points on two datasets for German-to-
English translation.

2. Related Work

The potential of overlapping phrases to improve fluency and
to smooth prediction of long and rare phrases has been dis-
covered independently in a few instances in prior work. The
crux of most of these approaches is an efficient integration of
overlapping phrases into decoding. For example, the expo-
nential number of translation hypotheses arising from over-
lapping phrases has been managed in beam search decoding
frameworks by reordering constraints that allow only adja-
cent non-overlapping phrases to be swapped [5, 7]. This re-
ordering constraint seems to be too restrictive since it impacts
translation quality in comparison to state-of-the-art phrase-
based SMT.

Alternatively, sampling-based approaches [6] or graph-
search techniques [10, 11, 12] have been used for decod-
ing with overlapping phrases. These approaches suffer from
search errors due to necessary abstractions in sampling or
due to necessary approximations in adaptation of graph
search algorithms to SMT decoding.

The work related closest to our approach is that of Tribble
et al. [8, 13]. Their key idea is to circumvent decoder integra-
tion and instead to generate overlapping phrases in an offline
manner. In contrast to our work, their approach is restricted
to merging contiguous phrases. Furthermore, they extract
a single feature (based on phrase-internal word alignments)
for new phrases and do not learn discriminative weights. A
similar idea has also been presented for Example-Based MT
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[14, 15] where the focus is on combining given overlapping
phrases by a new search algorithm.

An alternative to enriching the repository of phrases with
overlapping phrase rules is the design of context-sensitive
features for discriminative training. Target context is clearly
exploited by large language models. Word-sense disam-
biguation inspired features [16] allow to exploit source con-
text, and recent approaches successfully merged source and
target context into a powerful decoding feature [17]. How-
ever, these approaches are orthogonal to our work.

3. Generating Overlapping Phrases with and
without Variables

Hierarchical phrases can be formalized as rules of a syn-
chronous CFG [4]. We denote terminals consisting of con-
tiguous phrases by T, and the single non-terminal variable by
NT. The key idea is to merge base rules into new rules by
pivoting on overlapping words. We apply this idea to base
rules consisting of terminals only (T rules) and to base rules
including non-terminals (NT rules).

As a first step, we apply the technique of [18] to extract
rules for German-to-English translation from the News Com-
mentary and TED data (see Section 5.1). Tables 1 and 2 show
the token counts of rule shapes for the extracted grammars.

We see that base rules consisting of terminals only (rule
shape T-T) are quite frequent in the extracted grammars for
both datasets. To these rules, the ideas of [8], namely merg-
ing all base rules that have overlapping words on both source
and target can be applied directly. For base rules including
non-terminals (rule shape including NT), merging of rules
can be done at word overlaps in terminals at the head of one
rule with terminals at the tail of another rule.

Because of the huge number of potential new rules, we
apply several filtering steps to the merging process. For T
rules, we firstly restrict our attention to base rules with more
than one terminal on source and target side. Secondly, we
apply count cutoffs of less than 5, 8, and 11 occurrences of
base rules in the training set. Lastly, given the test set, we
only store merged rules whose source sides are in principle
applicable to the test set. For rules including NTs, we restrict
our attention to base rules with exactly one NT on source
and target. Furthermore, we consider only base rules that are
seen at least 17, 20, or 23 times in the training set. Lastly,
a pre-filtering based on applicability of merged rules to test
set sources is done. Tables 3 and 4 show the counts of base
rules and merged rules before and after filtering on the News
Commentary and TED datasets.

Overall, these filtering steps resulted in a considerable
number of new rules, i.e., rules that are unseen in the train-
ing set. Table 5 shows the percentages of overlapping phrase
rules that are applicable to the test data, but are unseen in
the training data, together with their actual use in the 1-best
translation of the test data. We find that new rules are com-
posed at a considerably higher percentage from base T rules
than from base NT rules, resulting in a similar usage pattern

News Commentary testset TED testset

new used new used

T 5 65.3 25.3 63.5 54.5
T 8 54.8 18.7 49.6 43.3
T 11 47.1 10.6 40.1 36.7

NT 17 21.7 2.5 37.8 10.8
NT 20 17.7 4.5 35.2 8.6
NT 23 15.3 5.5 32.7 6.9

T + NT 24.7 16.4 38.03 23.0

Table 5: Percentages of overlapping phrase rules composed
from base rules and unseen in training (“new”), out of rules
of the same form applicable to the test set, together with their
usage in translating the test set (“used”), out of rules of the
same form used to translate the test set.

(1) X → 〈 es stellt sich heraus ||| it turns out 〉

(2) X → 〈 stellt sich heraus , dass ||| turns out that 〉

(3) X → 〈 es stellt sich heraus , dass ||| it turns out that 〉

Figure 1: T rule (3) merged from rules (1) and (2).

of more T rules than NT rules used in 1-best translations of
both test sets. As expected, these percentages are decreasing
the more restrictive the count cutoffs are set. A combination
of T and NT rules shows a pattern of composition and usage
in between T rules and NT rules.

Across all extracted rules, the average number of words
in merged rules is as little as 0.1 tokens higher than in base
rules for News Commentary, and increases on average up to
more than 1 token for the TED data set. For the majority of
cases, the overlap is 1 token in source and target. In 1− 2%
of the cases, the overlap is 2 tokens, and only 0.1% of the
new phrases overlap in 3 or 4 tokens.

An example for a merger of two T rules (1) and (2) into a
new rule (3), with an overlap of 3 source tokens and 2 target
tokens, is given in Fig. 1. A merger of two rules including
NTs is given in Fig. 2. Here, the overlap in target and source
is 2 tokens.

4. Feature Extraction and Tuning
[8] use IBM model 1 word-level alignments of the merged
phrases to directly assign probabilities to the new phrases. In
this work, we use the SMT decoder cdec [9] that combines
features into a log-linear model and offers several learners
for discriminative tuning of weights.

We compare four feature configurations. First, we use
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Count Shape

359,406 T NT T - T NT T
270,813 NT T NT T - NT T NT T
267,528 T NT T NT - T NT T NT
155,250 T NT T NT T - T NT T NT T
129,400 T - T
109,447 T NT - T NT
104,924 NT T - NT T
99,615 NT T NT - NT T NT
58,824 T NT T NT - T NT NT
50,253 NT T NT T - NT NT T
35,015 T NT T NT T - T NT NT T
28,496 NT T NT T - T NT NT T
24,523 T NT T - T NT
23,821 T NT T NT - T NT NT T
22,705 NT T - T NT
20,658 NT T NT - T NT NT
20,639 NT T NT T - NT T NT
20,498 NT T NT - NT NT T
20,455 T NT - NT T

Count Shape

20,003 NT T - T NT T
17,480 NT T NT - T NT T NT
17,276 T NT T - NT T
16,967 NT T NT T - T NT T NT T
16,559 T NT T NT - NT T NT
16,465 T NT T NT - T NT T NT T
15,965 NT T NT - NT T NT T
15,366 T NT - T NT T
11,736 T NT T NT T - T NT T NT
11,378 T NT T NT T - NT T NT T
10,625 NT T NT T - T NT T NT
8,691 T NT T NT - NT T NT T
2,693 NT T NT T - T NT NT
1,948 NT T NT - T NT NT T
1,525 T NT T NT - NT NT T
848 NT T NT - T NT T NT T
576 T NT T NT T - NT T NT
459 T NT T NT T - T NT NT
303 T NT T NT T - NT NT T

Table 1: Rule shapes in the grammar extracted from News Commentary.

(1) X → 〈 ist wirklich X1 , aber ||| is really X1 , but 〉

(2) X → 〈 , aber man X1||| , but you X1〉

(3) X → 〈 ist wirklich X1 , aber man X2|||
is really X1 , but you X2〉

Figure 2: NT rule (3) merged from rules (1) and (2).

cdec’s implementation of lexical phrase probabilities for
source words f and target words e:

MaxLexFgivenE = −
∑

i

log10 pmax(fi|e) (1)

and

MaxLexEgivenF = −
∑

i

log10 pmax(ei|f). (2)

Second, we add a new feature that indicates whether a
rule is created by merging as follows:

NewRule =

{
1 if the rule is new,
0 otherwise.

(3)

Third, we calculate the following standard statistics
among new rules that were merged from base rules extracted
for the test set:

EgivenFCoherent = − log10(count EF/count F ) (4)

SampleCountF = log10(1 + count F ) (5)

CountEF = log10(1 + count EF ) (6)

IsSingletonF =

{
1 if count F = 1,
0 otherwise.

(7)

IsSingletonFE =

{
1 if count EF = 1,
0 otherwise.

(8)

Last, we take inspiration from [19]’s adaptive features
that combine counts from a lookup in post-editing data with
counts from the suffix array sample extracted for the test set.
In our case, this corresponds to combining count statistics for
new rules only (denoted by subscript L) with count statistics
for base rules extracted for the test set (denoted by subscript
S):

EgivenFCoherent = − log10((count EFS+count EFL)/

(count FS + count FL)) (9)

SampleCountF = log10(1+count FS+count FL) (10)
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Count Shape

373,500 T NT T - T NT T
284,364 T NT T NT - T NT T NT
277,682 NT T NT T - NT T NT T
204,562 T NT T NT T - T NT T NT T
97,485 T - T
92,133 T NT - T NT
86,469 NT T - NT T
85,518 NT T NT - NT T NT
47,617 T NT T NT - T NT NT
43,403 T NT T NT T - T NT NT T
38,121 NT T NT T - NT NT T
29,213 NT T NT T - T NT NT T
25,302 T NT T NT - T NT NT T
20,839 T NT T - T NT
20,173 NT T NT T - T NT T NT T
17,559 NT T NT T - NT T NT
17,328 NT T - T NT T
16,404 NT T NT - T NT T NT
16,087 T NT T NT - T NT T NT T

Count Shape

14,166 T NT T NT T - T NT T NT
14,039 NT T NT - NT T NT T
13,836 T NT T - NT T
13,476 T NT - T NT T
13,078 NT T NT - NT NT T
12,907 T NT T NT - NT T NT
12,893 NT T - T NT
12,658 T NT - NT T
12,376 NT T NT - T NT NT
10,454 T NT T NT T - NT T NT T
7,159 NT T NT T - T NT T NT
5,170 T NT T NT - NT T NT T
1,566 NT T NT - T NT NT T
1,368 NT T NT T - T NT NT
836 T NT T NT - NT NT T
813 NT T NT - T NT T NT T
496 T NT T NT T - NT T NT
343 T NT T NT T - T NT NT
234 T NT T NT T - NT NT T

Table 2: Rule shapes in the grammar extracted from TED talks.

CountEF = log10(1 + count EFS + count EFL) (11)

MaxLexFgivenE = pmax(f̃ |ẽ) = −
∑

i

log10 pmax(fi|e)

(12)

MaxLexEgivenF = pmax(ẽ|f̃) = −
∑

i

log10 pmax(ei|f)

(13)

IsSingletonF =

{
1 if count FS + count FL = 1,
0 otherwise.

(14)

IsSingletonFE =

{
1 if count EFS + count EFL = 1,
0 otherwise.

(15)

NewRule =

{
1 if the rule is new,
0 otherwise.

(16)

Discriminative tuning is performed on the respective tun-
ing sets of the News Commentary and TED data. We use the
pairwise ranking learner of [20] for this purpose. In addition
to the standard handful of dense feature, sparse features for
rule shapes, rule identifiers, and bigrams in rule source and
target are extracted from grammar rules.

NC train train-lm tune test

Sentences 136,227 180,657 1,057 1,064
Words de 3,005,252 26,205 23,593
Words en 2,909,346 3,797,500 25,660 22,518

TED train train-lm tune test

Sentences 139,563 158,641 1,172 746
Words de 2,195,030 21,270 11,831
Words en 2,332,370 2,715,777 21,679 12,734

Table 6: News Commentary and TED de-en parallel data.

5. Translation Experiments
5.1. Systems and Data

The data used in our experiments are the German-English
parallel data provided in the News Commentary and TED re-
leases of WMT 20071 and IWSLT 20132, respectively. Table
6 gives the basic data statistics for News Commentary (NC)
and TED data.

The bilingual SMT system used in our experiments is the
state-of-the-art SCFG decoder cdec [9]3. We built gram-
mars using its implementation of the suffix array extraction
method described in [18]. Word alignments are built from
all parallel data using fast align [21]. SCFG models use the
same settings as described in [4]. For language modeling,
we built a modified Kneser-Ney smoothed 5-gram language

1http://statmt.org/wmt07/shared-task.html
2http://www.iwslt2013.org/
3http://www.cdec-decoder.org
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News Commentary Base rules Merged rules Unique Applicable in test Unique

all 129,400
> 1 token 72,322
T 5 6,823 364,642 352,171 6,311 5,739
T 8 4,434 171,715 167,125 3,414 3,165
T 11 3,286 100,513 98,268 2,203 2,054

TED Base rules Merged rules Unique Applicable in test Unique

all 97,485
> 1 token 62,671
T 5 6,073 370,611 363,789 8,823 7,637
T 8 4,088 181,227 178,010 4,828 4,235
T 11 3,115 105,657 103,906 3,203 2,855

Table 3: Counts of base rules and merged rules with terminals only before and after filtering.

News Commentary Base rules Merged rules Unique Applicable in test Unique

all 694,105
NT 17 14,107 563,980 556,476 18,588 14,919
NT 20 11,592 324,790 319,919 13,794 11,039
NT 23 9,774 198,447 194,880 10,915 8,690

TED Base rules Merged rules Unique Applicable in test Unique

all 643,132
NT 17 14,684 1,980,618 1,940,402 34,696 28,293
NT 20 12,256 1,345,298 1,316,680 26,856 21,750
NT 23 10,334 908,066 887,474 21,118 16,938

Table 4: Counts of base rules and merged rules with nonterminals before and after filtering.

model [22, 23].
All data were normalized, tokenized and lowercased;

German compounds were split. For tokenization, lowercas-
ing and other preprocessing steps we used the scripts dis-
tributed with the Moses SMT toolkit [24]. For compound
splitting in German texts a standard empirical approach of
[25] was employed.

5.2. Experimental Results

Table 7 shows BLEU [26] results for MERT [27] optimiza-
tion of dense feature weights, and for pairwise ranking [20]
optimization of sparse feature weights. MERT runs were re-
peated three times to account for optimizer instability [28].
The pairwise ranking technique was stable in this respect.
Statistical significance is measured using Approximate Ran-
domization [29, 30] where result differences with a p-value
smaller than 0.05 are considered significant.

In order to investigate a possible correspondence of the
patterns of composition and usage shown in Table 5, we eval-
uate overlapping phrases merged from base T rules and base
NT rules separately. Table 8 shows BLEU results for dif-
ferent frequency cutoffs for base rules (see Section 3) and
different feature sets (see Section 4) on the News Commen-

News Commentary TED

MERT 24.95 25.94
PairRank 25.69† 25.90

Table 7: Baseline results for News Commentary and TED
talks German-to-English translation. Statistically significant
differences to MERT are denoted with †.

tary data for German-to-English translation. All results are
nominal improvements over the PairRank baseline in Table
7, with several statistically significant result differences. Best
results, namely an improvement of 1.3 BLEU points over
the MERT baseline, and a gain of 0.6 BLEU points over the
pairwise-ranking baseline are obtained for merging overlap-
ping rules from base T rules, using all adaptive features. Best
results for merging rules from NT rules are slightly lower.

Table 9 evaluates the same configurations of base rule
cutoffs and features on the TED talk data. Here the best result
is a nominal improvement of 0.3 BLEU points over the base-
line, obtained by merging rules from base T rules. Again,
this result is slightly better than merging rules from base NT
rules. However, in case of the TED data, no result difference
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Cutoff Features (1)-(2) (1)-(3) (1)-(8) (9)-(16)

T 5 25.83 25.82 25.83 25.86
T 8 25.99 25.99 26.02 26.24†

T 11 25.93 26.08† 26.12† 25.75
NT 17 25.76 26.13† 26.01 25.84
NT 20 26.14† 25.70 25.89 25.97
NT 23 25.76 25.90 26.22† 25.82

Table 8: Results for News Commentary, German-English
translation. Best results for a certain feature set in italics,
best result overall in bold. Significant differences compared
to the PairRank baseline of Table 7 are denoted with †.

Cutoff Features (1)-(2) (1)-(3) (1)-(8) (9)-(16)

T 5 25.89 25.94 25.93 26.00
T 8 25.96 25.95 26.23 26.01
T 11 25.84 26.13 25.79 25.98
NT 17 25.71 25.93 26.04 25.82
NT 20 25.50 26.03 26.02 26.10
NT 23 25.57 26.04 26.01 25.78

Table 9: Results for TED, German-English translation. Best
results for a certain feature set in italics, best result overall
in bold. Significant differences compared to the PairRank
baseline of Table 7 are denoted with †.

is statistically significant compared to the PairRank baseline.
Table 10 shows an evaluation for a combination of over-

lapping phrase rules merged from base T rules and base NT
rules. Combining the best configurations for generating over-
lapping phrases from T-only and NT base rules yields results
that are about 0.1 BLEU point lower than the best results in
Tables 8 and 9. Result differences are statistically significant
for News Commentary, but not for TED experiments.

Overall, we find a correspondence of BLEU improve-
ments shown in Tables 8, 9, 10 with the pattern of composi-
tion and usage shown in Table 5, with higher gains and higher
usage for T rules compared to NT rules.

6. Conclusion
We presented an application of the idea of offline merging of
bi-phrases into longer phrases with overlapping words to the
framework of hierarchical phrase-based translation. The ad-
vantages of overlapping phrases in translation are enhanced
fluency in positions that would otherwise be phrase bound-
aries. Furthermore, a large number of new phrases can be
generated that have never been seen in the training data but
are applicable to the test data. Our approach maintains all
the benefits of using overlapping phrases at translation time,
without the pain of having to modify the decoder to deal with
overlapping phrases.

Our experimental results on two datasets for German-to-

News Commentary TED

T + NT 26.15† 26.10

Table 10: Best results for combination of NT and T over-
lapping phrases on TED and News Commentary, German-
English translation. Significant differences compared to the
PairRank baseline of Table 7 are denoted with †.

English translation show gains of 0.3−0.6 BLEU points over
a baseline system that implements discriminatively trained
hierarchical phrase-based SMT. We conjecture that improved
quality at translation time might be worth the overhead of
building overlapping rules at phrase extraction time.
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ABSTRACT

Translation of the output of automatic speech recognition
(ASR) systems, also known as speech translation, has re-
ceived a lot of research interest recently. This is espe-
cially true for programs such as DARPA BOLT which fo-
cus on improving spontaneous human-human conversation
across languages. However, this research is hindered by the
dearth of datasets developed for this explicit purpose. For
Egyptian Arabic-English, in particular, no parallel speech-
transcription-translation dataset exists in the same domain. In
order to support research in speech translation, we introduce
the Callhome Egyptian Arabic-English Speech Translation
Corpus. This supplements the existing LDC corpus with four
reference translations for each utterance in the transcripts.
The result is a three-way parallel dataset of Egyptian Arabic
Speech, transcriptions and English translations.

Index Terms— Spoken Language Translation, Speech Recog-
nition, Machine Translation, Language Resources, Corpus
Creation

1. INTRODUCTION

Translation of the output of automatic speech recognition
(ASR) systems, also known as speech translation, has been
the subject of research for several years now. Major pro-
grams that focused on this were VERBMOBIL, NESPOLE!,
DARPA TRANSTAC, DARPA GALE and the Quaero project.
The early projects were limited domain and limited vocabu-
lary systems built to cater to machine directed or well enunci-
ated speech. However, DARPA GALE and Quaero required
large vocabulary continuous speech recognition systems with
generic language models for ASR, and wide coverage SMT
systems for translation. As both ASR and statistical ma-
chine translation systems have become more effective over

This work was supported by NSF IIS award No 0963898 and DARPA
BOLT contract No HR0011-12-C-0015. The U.S. Government is authorized
to reproduce and distribute reprints for Governmental purposes notwithstand-
ing any copyright annotation thereon. The views and conclusions contained
herein are those of the authors and should not be interpreted as necessarily
representing the official policies or endorsements, either expressed or im-
plied, of NSF, DARPA or the U.S. Government.

the years, speech translation has once again become a ma-
jor topic of research. The focus of the most recent project,
DARPA BOLT (similar to its predecessor DARPA GALE),
is to build spoken language translation (SLT) systems for
spontaneous, conversational, human-human speech. In con-
trast to machine directed or scripted conversations (broadcast
news), most conversational speech has by nature, variabil-
ity in recording environment and vocal registers and a high
number of disfluencies and out-of-vocabulary words. It also
exhibits difficult challenges associated with code switching
and regional dialects. This directly relates to an increase of
difficulty for both ASR and SMT systems. Since SLT systems
are generally built by feeding the output of the ASR system
to an SMT system, each trained on separate datasets [1, 2],
errors produced by the systems compound.

With respect to Egyptian Arabic specifically, unscripted,
spontaneous, telephone conversations have been available
through the Callhome Egyptian Arabic corpus (speech and
transcripts) since 1997. However, since this dataset did not
come with translations for the transcriptions in Arabic, re-
searchers had to resort to using out-of-domain data to train
the SMT systems. Transcripts for spontaneous conversations
(speech), vary significantly from transcripts for scripted con-
versations and informal written conversations (web, forum,
SMS, chat).

To bridge this gap between the type of data the ASR and
SMT systems were trained on for SLT applications, we have
created the Callhome Egyptian Arabic Speech Translation
dataset. This supplements the existing LDC corpus with four
reference translations for each utterance in the transcripts.
The result is a three-way parallel dataset of Egyptian Arabic
Speech recordings, transcriptions of the Arabic speech, and
translations into English.

The primary goal of this paper is to describe the process of
creation of this corpus in time for its pending public release,
so that researchers who use the corpus have a good under-
standing of both its scope and limitations. We believe that this
corpus will enable considerable new research in translation of
spontaneous/conversational Arabic speech into English.
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LDC Catalog Number Name #train #dev #eval
LDC97S45, LDC97T19 Callhome Egyptian Arabic Speech/Transcripts 80 20 20

LDC2002S22, LDC2002T39 1997 HUB5 Arabic Evaluation 0 0 20
LDC2002S37, LDC2002T38 Callhome Egyptian Arabic Speech/Transcripts Supplement 0 0 20

Table 1. Sizes (in # conversations) of the Callhome Egyptian Arabic corpus, supplements and evaluation datasets. The conver-
sations last between 5-30 minutes.

Partition # Utt’s # Words Words/Utt
ECA-96 (train) 20,861 139,035 6.66
ECA-96 (dev) 6,415 34,543 5.38
ECA-96 (test) 3,044 16,500 5.42

97-eval-H5 2,800 18,845 6.73
ECA-supplement 2772 18039 6.51

Table 2. Partition statistics for the Callhome Egyptian Ara-
bic corpus, supplements and evaluation datasets. Column 2,3
and 4 represent number of utterances, numbers of words and
average number of words per utterance respectively.

2. CORPUS AND TRANSLATION SETUP

We present English translations of the Egyptian-Arabic Call-
home corpus, supplements and evaluation sets. These datasets
were commissioned and used by the DARPA GALE (Global
Autonomous Language Exploitation), DARPA EARS (Effec-
tive Affordable Reusable Speech-to-text) and the NIST HUB-
5 LVSCR (Large Vocabulary Conversational Speech Recog-
nition) programs.

The speech part of the corpus consists of unscripted tele-
phone conversations between native speakers of Egyptian
Colloquial Arabic (ECA). The conversations last between
5-30 minutes. In addition to the conversations, speaker meta-
data including gender, age, education and accent is available.
Conversation metadata includes channel quality, crosstalk
identifiers and number of speakers.

For each of the conversations, transcripts that cover a con-
tiguous 5-10 minute segment are available. Manual audio
segmentation information is available through the transcripts
which have start and end time for each utterance in a con-
versation. Since ECA does not have a standard orthographic
system, the conversations were transcribed using a romanized
orthographic system which was phonemically based. This
system preserves word pronunciation information and word
identity. These transcripts in romanized orthography were
then converted to Arabic script (encoding : ISO 8859-6) using
a lexicon lookup [LDC99L22]. Table 2 provides details about
this corpus.

2.1. Callhome Egyptian Arabic Speech/Transcripts

This corpus [Speech: LDC97S45, Transcripts: LDC97T19],
hereafter referred to as ECA-96, consists of 120 unscripted
telephone conversations. The corpus is split into three parti-
tions : train, dev and eval, containing 80, 20 and 20 conversa-
tions respectively. The transcripts contain 30,320 utterances
with a total of 190,078 words.

2.2. 1997 HUB5 Arabic Evaluation

This corpus [Speech: LDC2002S22, Transcripts: LDC2002T39],
hereafter referred to as 97-eval-H5, was used as the evalua-
tion set for the 1997 NIST HUB-5 non-English evaluation of
conversational speech recognition systems. It consists of 20
unscripted telephone conversations. The transcripts contain
2,800 utterances with a total of 18,845 words.

2.3. Callhome Egyptian Arabic Speech/Transcripts Sup-
plements

This corpus [Speech: LDC2002S37, Transcripts: LDC2002T38],
hereafter referred to collectively as the ECA supplement, was
initially sequestered for future NIST evaluations, but later
released as a supplement to ECA-96. It consists of 20 un-
scripted telephone conversations. The transcripts contain
2,722 utterances comprised of 18,039 words.

2.4. Special Symbols in Transcription

Since the telephone conversations in this corpus are informal
in nature and unscripted, special symbols are used to mark
sections of the conversation that are not conventional Arabic
speech. These contain non-verbal vocalizations, disfluencies,
background noise and distortion. Table 3 provides a sample
of some of these special symbols. Further details are available
in the documentation of the respective corpus.

2.5. Egyptian Arabic Lexicon

An Egyptian Arabic colloquial pronunciation dictionary
which supplements the corpora mentioned above, is avail-
able (LDC99L22). The lexicon contains 51,202 entries from
the ECA-96, ECA-supplement and the Badawi and Hines dic-
tionary of Egyptian Colloquial Arabic. This lexicon includes
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Symbol Interpretation
{text} sound made by the talker
[text] background or channel sound

<language text> speech in another language
((text)) unintelligible, best guess provided

(( )) unintelligible; can’t guess text
**text** idiosyncratic word, not in common use

-text , text- partial words

Table 3. A sample of the special symbols using in the Ara-
bic transcripts. These represent non-conventional speech seg-
ments such as non-verbal vocalizations, disfluencies, back-
ground noise and distortion.

orthographic representation of words in the LDC romaniza-
tion scheme and Arabic script along with morphological,
phonological, stress, source, and frequency information.

3. TRANSLATION METHODOLOGY

The translations for the Egyptian Arabic Callhome corpus
were obtained using crowd-sourcing techniques. Crowd-
sourcing has become a standard technique in the collection
and annotation of scientific data [3, 4, 5, 6, 7, 8] includ-
ing data for natural language processing tasks like machine
translation [9]. We use the crowdsourcing platform, Amazon
Mechanical Turk (MTurk) to obtain translations. We follow
the best practices suggested by [9] in this process.

3.1. Pre-processing

Each transcript was pre-processed to remove markup, in-
cluding the special symbols described in Section 2.4. Some
special symbols contain text in a foreign language (mostly,
English). These were retained so that they could be passed
through to the translation. Utterances that comprised only of
markup and the special symbols were removed. Each utter-
ance in the corpus contains channel and segment information.
These were incorporated as a part of a segment identifier so
that the translations could be mapped back to the transcrip-
tions and the speech segments.

3.2. Collecting Translations

A translation task on the MTurk platform is presented to the
translators as a HIT (Human Intelligence Task). Each trans-
lator was presented with a sequence of ten segments to trans-
late. These segments or utterances were always presented in
the order they appear on the transcripts. Since the conversa-
tion consists of two channels, the order presented generally
comprised of alternating speakers. This allowed the transla-
tors to incorporate context wherever it is available and helpful.
Each HIT included translation instructions derived from [9].

In addition, translators were instructed to retain the foreign
language information in the utterance. As noted earlier, the
transcripts were converted to Arabic script from an interme-
diate romanized version. We did not attempt to normalize any
non-MSA words to create an MSA equivalent. Four indepen-
dent translations were obtained for each utterance using such
HITs.

3.3. Quality Control

MTurk provides a quality control mechanism which relies on
vetting of users and qualification tests. However, these meth-
ods in isolation are not enough to guarantee high quality trans-
lations. We used the following quality control measures to
ensure that the quality of the translations was acceptable and
to prevent inappropriate use of the platform.

• For each utterance, we obtained translations from
Google Translate. If a translation had a small edit
distance from the translation obtained via Google
Translate, it was flagged, reviewed and rejected if it
had the same errors.

• The utterance for translation task was presented as an
image rather than as text. This prevented users from
using online translation services to cut and paste trans-
lations.

• Manually translated gold standard segments were in-
serted into our dataset. Each translator was presented
with three such segments. Their HITs were flagged,
reviewed and rejected if their translation for these seg-
ments was not similar to the gold standard translations.

• We gathered self-reported geographical and language
information for each of our contributors on MTurk. The
specification for our task asked native Arabic speak-
ers to participate. Since HITs had to be manually ap-
proved, we checked translator metadata and number of
translations received. In addition, prior to approval, a
spot check of the translations was conducted. Finally,
higher preference was given to trusted Arabic speakers
that we have worked with on other translation tasks.

3.4. Post-processing

The translations were split based on the partitions described
in Section 2 and each partition was duplicated (typically four-
fold) to obtain redundant/independent translations. For some
utterances, we ended up obtained more than four translations.
These were stored in an overflow file. Utterances that only
contained markup and special symbols (which were previ-
ously removed) were re-inserted into this set of translations
to restore utterance-level synchronization with the LDC cor-
pora.
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Partition # Utt’s # Words Words/Utt
ECA-96 (train) 86,313 713,549 8.27
ECA-96 (dev) 25,769 186,400 7.23
ECA-96 (test) 12,212 85,182 6.98

97-eval-H5 11,248 91,647 8.15
ECA-supplement 11,126 87,489 7.86

Table 4. The results of the translation task described in sec-
tion 4. Each utterance in the original partitions has about four
redundant translations. The number of utterances in column
2 has hence effectively been multiplied by 4. The last column
represents the number of words per utterance in the transla-
tions.

Partition Crossfold BLEU
ECA-96 (train) 40.09%
ECA-96 (dev) 35.64%
ECA-96 (test) 35.86%

97-eval-H5 35.81%
ECA-supplement 37.15%

Table 6. Inter-annotator BLEU per partition of the Callhome
Egyptian Arabic corpus, supplements and evaluation datasets.
Each translation was evaluated against three translations to
obtain a BLEU score per utterance. This was averaged per
partition.

4. TRANSLATION TASK RESULTS AND
CONSISTENCY

In total, 838 translators participated in this process, producing
143,568 translations in English. Table 4 summarizes the re-
sults of the translation task. Note that the average number of
words per utterance has increased after translation to English.
Table 5 provides a sample of the translations obtained.

To measure inter-annotator agreement, we used a cross-
folding type BLEU scoring scheme. Translations for each
partition were lower-cased, tokenized using the Penn WSJ
treebank conventions, and punctuation was normalized. Each
translation was then evaluated against the remaining three
translations in a cross-folding fashion. The results were av-
eraged per dataset partition. The results of these experiments
are in Table 6.

5. PLANNED CORPUS RELEASE

In a manner similar to the previous work on speech translation
of [10], based on the Spanish Fisher and Callhome corpora,
we plan to provide Automatic Speech Recognition (ASR) out-
put for the datasets in the Callhome Egyptian Arabic corpus.
The ASR output will be provided in the form of OpenFST lat-
tices, lattice oracles (paths that have the least word error rate

in the lattice) and the 1-best output. This will effectively lead
to the creation of a four-way parallel dataset with Egyptian
Arabic speech, transcripts, ASR output and English transla-
tions. Our goal in providing the ASR output is to enable re-
search in speech translation for Statistical Machine Transla-
tion (SMT) researchers as well.

6. CONCLUSION

We presented the Callhome Egyptian Arabic Speech Trans-
lation Corpus based on the Callhome Egyptian Arabic cor-
pus, supplements and evaluation (HUB5) datasets. With the
ASR output, the resulting speech translation corpus is a four-
way parallel dataset with Egyptian Arabic speech, transcripts,
ASR output (lattice, lattice oracle and 1-best) and transla-
tions. This in-domain dataset is an effort to aid research in
translation of spontaneous, conversational speech with a long
term goal of improving human-human conversation.
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Source ù�®J. K
 	àñ 	®J
Ê�JË @ úÎ« ��ðXQ��J.Ó ñ�J 	K @ AÓ

Translation 1 you do n’t reply to the phone
Translation 2 so you do n’t answer the phone then
Translation 3 you do n’t answer the phone it seems
Translation 4 because you do n’t answer the call then

Source 	àAÒ» é� 	® 	K éJ
Ê« 	àAJ.ª�Ó

Translation 1 he feels hard for himself too
Translation 2 he feel bad about himself
Translation 3 he feels sorry for himself too
Translation 4 i feel sorrow about his condition too
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tokenized and punctuation has been normalized.
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Abstract
Finding sufficient in-domain text data for language model-
ing is a recurrent challenge. Some methods have already
been proposed for selecting parts of out-of-domain text data
most closely resembling the in-domain data using a small
amount of the latter. Including this new “near-domain” data
in training can potentially lead to better language model per-
formance, while reducing training resources relative to incor-
porating all data.

One popular, state-of-the-art selection process based on
cross-entropy scores makes use of in-domain and out-of-
domain language models. In order to compensate for the
limited availability of the in-domain data required for this
method, we introduce enhancements to two of its steps.

Firstly, we improve the procedure for drawing the out-
of-domain sample data used for selection. Secondly, we use
word-associations in order to extend the underlying vocabu-
lary of the sample language models used for scoring. These
enhancements are applied to selecting text for language mod-
eling of talks given in a technical subject area.

Besides comparing perplexity, we judge the resulting
language models by their performance in automatic speech
recognition and machine translation tasks. We evaluate our
method in different contexts. We show that it yields consis-
tent improvements, up to 2% absolute reduction in word er-
ror rate and 0.3 Bleu points. We achieve these improvements
even given a much smaller in-domain set.

1. Introduction
The need for in-domain data in machine learning is a well-
established problem and should be well motivated in previ-
ous papers (e.g [1]). We briefly observe, however, that across
domains system performance is tied to the similarity between
training and testing data. The testing data used for guiding
system development is almost synonymous with in-domain
data. It follows directly that training data should also re-
semble the in-domain as closely as possible. In-domain data
however is also almost always the most limited kind. This
necessitates supplementing it with out-of-domain or non-
domain-specific data in order to achieve satisfactory model
estimates.

In this paper we consider the training of language mod-
els for speech recognition and machine translation of uni-

versity lectures, which are very domain-specific. Typically
this means adapting existing systems to a new topic. Perhaps
unique to this application is that the in-domain data for lec-
tures is normally of a very small size. A one-hour lecture
may produce under a thousand utterances and roughly ten
thousand words. The necessity of rapid system development
and testing in this context encourages us to limit training data
size. What we want, then is a way to reduce large amounts of
data and at the same time improve its relevance. Ideally we
would also be able to do so using only a very small amount
of in-domain data.

We improve the work of [2] by drawing a better repre-
sentative sample of out-of-domain data and language model
(LM) vocabulary. However, more centrally, we extend the
work of [2] by using a word-association based on a broad def-
inition of similarity to extend these language models. With
this extension, we do not compare solely the exact matching
words from in-domain and out-of-domain corpora, but also
their semantically associated words. These semantic associa-
tions can be inferred, as in the example of this paper through
the use of pre-existing non-domain-specific parallel and/or
monolingual corpora, or through hand-made thesauri. Then
with a small amount of in-domain data we use the aforemen-
tioned extended language models to rank and select out-of-
domain sentences.

1.1. Previous Work

The starting point and reference of our work is that found
in [2], which is to our knowledge one of the most recent
and popular methods in a series of methods on data selec-
tion [3, 4, 5]. Their approach assumes the availability of
enough in-domain data to train a reasonable in-domain LM,
which is used to compute a cross-entropy score for the out-
of-domain sentences. The sentence is also scored by another,
out-of-domain LM resulting from a similar-sized random
out-of-domain sample. If the difference between these two
scores exceeds a certain threshold the sentence is retained,
the threshold being tuned on a small heldout in-domain set.
This approach can be qualified as one based on the perplex-
ity of the out-of-domain data. The in-domain data used in
[2] is the EPPS corpus, which contains more than one mil-
lion sentences. This stands in contrast to the lecture case
with very specific domains and very limited data sizes. The
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authors report their results in terms of perplexity, for which
their technique outperforms a baseline selection method by
twenty absolute points. Their approach has been shown to
be effective for selecting LM training data, at least from the
perspective of a Statistical Machine Translation (SMT) sys-
tem with a specific domain task [6, 7, 8]. We note that the
main task of these systems was to translate TED talks.1 The
work in [2] was extended to parallel data selection by [9, 10].
However, the last work concludes that the approach is less ef-
fective in the parallel case.

The approach of differential LM scores used in the afore-
mentioned papers has a long history in the information re-
trieval (IR) domain [11, 12]. However, only unigram lan-
guage models are considered in the context of IR, since the
order in this task is meaningless.

Enriching the LM capability by incorporating word rela-
tionships has also been proposed in IR and is referred to as
a translation model therein [13, 14].2 More closely related
to our approach, [15] uses word similarities to extend LMs
in all orders. They show that extended LMs with properly
computed word similarities significantly improve their per-
formance at least in a speech recognition task.

1.2. Area of Application

The translation of talks and lectures between natural lan-
guages has gained attention in recent years, with events such
as the International Workshop on Spoken Language Trans-
lation (IWSLT) sponsoring evaluations of lecture translation
systems for such material as TED talks. From the perspective
of Automatic Speech Recognition (ASR), talks and lectures
are an interesting domain where the current state of the art
can be advanced, as the style of speaking is thought to lie
somewhere between spontaneous and read speech.

As noted previously, university lectures in particular are
very domain-specific and thus in-domain data tends to be
quite limited. The typical approach for language modeling in
such a scenario is to include as much data as possible, both
in- and out-of-domain, and allow weighted interpolation to
select the best mixture based on some heldout set. However,
if a satisfactory method could be found to choose only those
parts of the out-of-domain set most similar to the in-domain
set, this would reduce the amount of necessary LM training
data. Not only would this save training time, it would also
produce LMs that are smaller and possibly more adapted to
the task at hand.

We perform text selection using variations of our tech-
nique and train language models on the resulting selected
data. These LMs are then evaluated in terms of their perplex-
ity on a heldout set, the word-error-rate of a speech recog-
niser, and an SMT system using the LM. We also apply the
technique of [2] to our selection task as a reference.

1http://www.ted.com
2Note that we will use the terms “translation model” and “lexicon” inter-

changeably throughout the paper.

1.3. Paper structure

The remainder of the paper is structured as follows. In sec-
tion 2 we describe the theory behind our enhancements to the
standard selection algorithm. First, we discuss our method of
intelligently selecting the out-of-domain LM used for cross-
entropy selection. Next, we discuss our experiments with
a more careful selection of the cross-entropy in-domain and
out-of-domain language model vocabularies. In section 3.1
we introduce our association-based approach. We describe
how we compute lexicons and how we use them to extend
the cross-entropy language models. The results of our ex-
periments are presented in section 5. We end the paper with
section 6 in which we draw conclusions and discuss future
work.

2. Enhancements
2.1. Drawing an out-of-domain representative sample

In the cross-entropy method of [2] previously described in
Section 1.1, the out-of-domain LM is taken simply as a ran-
dom sample of the larger out-of-domain data upon which we
do selection, OD. However, randomly-drawn text may rep-
resent both in-domain as well as out-of-domain data (OD).
The out-of-domain LM should instead represent the kind of
data which we seek to exclude from our selection. Since the
in-domain data should be the furthest from the latter kind of
data, we reasoned that the in-domain LM could be used to
intelligently select the data for the out-of-domain LM. We
do this by first scoring the sentences in OD with the in-
domain LM for perplexity (with a closed vocabulary). As
some of our data in OD comes from web crawls, the sen-
tences with the highest perplexity are mainly “junk” coming
from automatic text processors and/or converters. The sen-
tences with the lowest perplexity are mostly in the in-domain
set. Therefore we specify some range around the median per-
plexity (m) as being a legitimate region from which to select
sentences for the out-of-domain LM. In our case we chose
m± 0.5m with m being the median perplexity. Then for our
out-of-domain LM we randomly draw an appropriate number
of sentences from this range. The probability of any particu-
lar sentence being drawn is proportional to its corresponding
perplexity.3

2.2. Vocabulary selection

Intuitively, we could think of vocabulary words as indicators
of the importance of a sentence. Words occurring with high
frequency in both in- and out-of-domain data sets would be
of lower interest. In contrast, words frequently encountered
in the in-domain only indicate that the sentence is of high
importance. It was not clear to us whether the words which
are common in the out-of-domain only would be a negative
indicator. That is why we experimented with different ways

3For the weighted random sampling without replacement, we use the
algorithm described in [16]
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for choosing the vocabulary on which the LMs are based.
The first vocabulary is taken as the intersection of the in-
and out-of-domain vocabularies V1 = voc{ID}∩voc{OD}.
The second vocabulary incorporates the first and adds those
words which occur with high frequency in the in-domain
source only. This is V2 = V1 ∪ hf{ID}. The third incor-
porates the second (and consequently the first,) adding those
high-frequency words occurring only in the out-of-domain
LM dataset. Thus V3 = V1 ∪ hf{OD} A visual representa-
tion of this scheme is depicted in figure 1.

voc{OD}

hf{OD}

voc{ID}∩voc{OD}

hf{ID}

voc{ID}

Figure 1: Diagrammatic representation of vocabularies of
in- and out-of-domain sources

3. Extended Cross-Entropy Selection
In this section, we present our approach to create the word
associations resulting in a lexicon quantifying the strength of
relationships between vocabulary words and non-vocabulary
words. First, the theoretical motivation for this kind of asso-
ciation is presented. Then the technical details on how our
lexicon was built are discussed. Finally, the unigram LM ex-
tension is explained.

3.1. From bilingual word alignments to monolingual
word associations

It is noteworthy that the lexical word-associations could be
derived in many ways. These include manually hand-crafted
thesauri (e.g. WordNet [17]) or automatically learned from
monolingual corpora [18]. In this work, most of our exper-
iments are based on lexicons derived form freely available
parallel corpora, since we already dispose of relevant paral-
lel data and computational tools to perform such a task.

Our lexicon derivation is based on the following assump-
tion: In a perfectly aligned parallel corpus, words from the
source language aligned to the same target word should be
lexically related. Consequently, in creating a lexicon for a
language (say, German) we infer associations between the
(German) source words from their aligned target words (say,
in English.) The association between two source words is

proportional to the alignment probabilities relating them to
the common target word.

Based on this assumption, we would like to estimate re-
lationship strength (the so-called translation table) for pairs
of words. One word of such a pair, the vocabulary word,
is found in the LM vocabulary (and hence in the in-domain
sample). The selection of this vocabulary is explained in Sec-
tion 2.2. The other word comes from the source side (i.e.
German) of the parallel corpus but is not present in the LM
vocabulary.

Given a vocabulary word v and a non-vocabulary word
w, the association t(w | v) is estimated as follows:

t(w | v) = Pr(w, v)

Pr(v)

=
∑

z

Pr(z) Pr(w, v | z)
Pr(v)

≈
∑

z

Pr(z) Pr(w | z) Pr(v | z)
Pr(v)

=
∑

z

Pr(w | z) Pr(z | v)

(1)

In the second line of Equation (1), we rewrote the prob-
ability expression by introducing the aligned words z from
the target side (i.e English) as a latent variable. In the third
line, we simplified the expression in the previous line by as-
suming that source words are independent when conditioned
on the target words.

3.2. Lexicon creation

We create our lexicon from automatically aligned parallel
corpora (EPPS, NC, and Common Crawl). The corpora are
preprocessed by removing obvious tokens which would not
contribute to associating words such as numbers and punc-
tuation marks. Then we use the Giza++ toolkit to train the
IBM3 alignments in both directions (i.e German → English
and English → German). We then symmetrize the resulting
alignments using the intersection heuristic [19]. That is to
say, we retain only alignment points which appear in both
directions. An additional symmetrizing step we perform is
removing links corresponding to a negative association.4

The resulting alignments allow us to compute the terms
Pr(w | z) and Pr(z | v) in Equation (1) and therefore the
lexicon.5 The probabilities from this lexicon will be used to
induce a likelihood for the words which do not occur in the
original vocabulary of our LMs used for computing cross-
entropy scores. We discuss this LM extension in Section 3.4.

4Two words x and y are negatively associated if Pr(x, y) <
Pr(x) Pr(y) [20].

5In machine translation literature, the terms Pr(w | z) and Pr(z | v) are
referred to as Lexical Translation Models (not to be confused with the model
referred to as Translation Model in IR).

251

Proceedings of the 11th International Workshop on Spoken Language Translation
Lake Tahoe, December 4th and 5th, 2014



3.3. Associations from monoligual corpora

A more attractive approach to computing associations be-
tween words would be by exploiting monolingual resources.
These are available in much more important quantities for
any language compared to their parallel counterparts. We ex-
plored this approach by using the cosine similarity between
word vectors returned by word2vec [21] to infer word as-
sociations. For each vocabulary word we include the 10 most
similar non-vocabulary words in the resulting lexicon. The
similarity score between a vocabulary word v and a non-
vocabulary word w is computed as follows:

Sim (w, v) =
w · v

‖w‖‖v‖ + 1

where w and v are the word vectors associated with w and v
respectively.

Then, the association t(w | v) is obtained by normalizing
the similarity scores, as follows:

t (w | v) = Sim (w, v)∑
w′ Sim (w′, v)

3.4. Extension of LMs

According to the cross-entropy selection, the out-of-
vocabulary (OOV) words will have only a small effect on
a sentence score. This is due to the fact that they are mapped
to <unk> (the unknown word,) and therefore the probabil-
ity returned from one model (e.g. the in-domain) cancels its
counterpart from the other (e.g. the out-of-domain.)6 Conse-
quently, including more “important” words in the model with
a realistic likelihood would conceivably make our model
more robust.

To extend the LM with knowledge from the lexicon, we
add to the unigram order those words which in the lexicon
are associated with the LM vocabulary words. Therefore,
these new unigrams can contribute to evaluating the sentence
probabilities by the back-off mechanism. We found that the
rate of backing-off to these new words is about 20%. The in-
tegration of the new unigrams is performed as follows. First,
we discount the probabilities of the vocabulary words to free
some a priori fixed mass (say 1 − m0.) Afterwards, each
word added from the lexicon receives a share from m0 pro-
portional to two factors. The first factor is the LM probabil-
ity of the associated vocabulary words. The second factor is
the strength of the lexicon association connecting the out-of-
vocabulary word to the in-vocabulary words. Note that m0

is a tunable parameter. In our experiments, we found setting
m0 = Pr(<unk>) to be optimal.

Formally speaking, the probability of observing the word
w given that the word sequence w∗ is expressed as follows:

Pr (w | w∗) =

{
m0 PrLM (w | w∗) if |w∗w| > 0

(1−m0)
∑

v:|w∗v|>0 t (w | v) PrLM (v | w∗) otherwise

6This effect will mostly be a penalization. In practice, the probability of
<unk> is larger in the out-of-domain model

where w∗ is an arbitrary sequence of words, possibly empty
(for unigrams); PrLM is the original back-off LM probabil-
ity; |x∗| is the number of times the sequence x∗ appears in
the text; and t is the association table associating a vocab-
ulary word v to a non-vocabulary word w. This procedure
results in a new LM whose vocabulary is a superset of the
original vocabulary. However, in most of this work we ap-
plied this extension at the unigram level only and hence kept
the number of higher order n-grams unchanged.

4. Experimental Design
4.1. Data sources

For our out-of-domain data, we used a collection of mono-
lingual German-language text corpora from various sources.
This corpus totals around 37 million sentences and 0.67 bil-
lion tokens. We call this set of corpora OD. A table sum-
marising these sources is given in table 1.

Type Sentence count Token count
News 11M 204M
Blog 3M 45M
Webcrawls 18M 345M
Parliamentary transcripts 256K 3.4M
Speeches and talks 6.8K 164K
Other sources 1.2K 18K
Total 37M 670M

Table 1: Summary of monolingual out-of-domain text data
used as a basis for data selection, which we term OD

For bi-word association and lexicon training, we used a
German-English parallel corpus we term PC. This consists
of the public parallel corpora distributed for the WMT evalu-
ation campaign [22] totaling 3.3 million lines of parallel text.

An in-domain corpus was available totaling 11 thousand
lines and 237 thousand tokens, taken as mixture of transcrip-
tions of several university lectures. We call this corpus DEV.
Another similar-sized set from the same domain was held out
in order to evaluate the perplexity of the resulting LMs.

For the purpose of computing ASR word error rates
(WER), we took as a basis 16 hours of transcribed in-domain
talk and lecture recordings from our in-house resources. The
transcriptions for this set, composed of 13 thousand lines
with 168 thousand tokens, were used as a set of held-out in-
domain text for testing the perplexity of our language mod-
els. This held-out set is named TEST.

From the 16 hours of audio we randomly selected one
hour on which to test the ASR. We call it WERTEST.

4.2. Selection Process

Our process of creating a set of selected texts from OD
proceeded in several steps. Given DEV and OD we cre-
ated an in-domain LM and out-of-domain LM. In our ex-
periments with association-based scoring we extend the in-
domain and out-of-domain LMs with information from our
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lexicon. Next, scores were computed for each line in each
source in OD. We then ranked all candidate lines across
sources according to their score and retained only the top
K% of candidates to carry over into the selected corpus SEL.

Our baseline experiments focused on creating selections
from the base set, varying the top K% retained between 1%
and 100%. After creating the set SEL, we performed some
text normalisation such as compound word splitting.

German, the test language of our experiments, is known
for use of compound words. As this makes contributes to
a high out-of-vocabulary rate in ASR, a compound-splitting
algorithm is typically employed in this field. For exam-
ple “Entscheidungsfunktion” is split into “Entscheidungs+
Funktion.” This algorithm requires a list of sub-words and
selects the best split by maximizing the sum of the squared
sub-word-lengths [23]. The TEST and DEV corpora are pre-
processed using this technique, whereas as the alignment
texts for the lexicon training are not. This necessitated the
application of compound splitting after selection and prior to
LM training.

5. Results
In this section, we compare the results of the different tech-
niques mentioned in the previous sections (enhancements
and extensions).

In our first sets of experiments as shown in Tables 2 and
3, we perform selection using a reasonably-sized in-domain
set, DEV, with around eleven thousand sentences. 7 In Table
2 we report perplexity values of the LMs on TEST. For each
selection technique we show the results of retaining either
the top 1, 2, 5, 6, or 10% of sentences. The first row in the
table is our baseline consisting of the state-of-the-art cross-
entropy method of [2]. The improvements gained from the
enhancements are shown in the second row. The remaining
rows are related to applying the extension in different ways.

As shown in the third row, we apply the extension to the
in-domain LM in the process of drawing the out-of-domain
sample as explained in Section 2.1. For this we used only
the high-frequency in-domain vocabulary, hf{ID} as shown
in Figure 1. After that, we retrain both the in- and out-of-
domain LMs without extension. This configuration is re-
ferred to as “Extended Enhancements” (seen in the table as
“Ext. Enhancements.”)

In the fourth row we show the results of our “Extension”
configuration. This configuration applies the extension only
to our final in- and out-of-domain selection LMs (i.e., no ex-
tension was applied while drawing the out-of-domain sam-
ple), using the approach described in Section 3.4.

Finally, the previous two extensions are effectively com-
bined. This means that we apply two independent exten-
sions: we extend the in-domain LM in order to draw the out-
of-domain representative and then we extend both in- and

7It is noteworthy that even this reasonably-sized in-domain set is less
than 1% of the size of the in-domain set used in [2].

out-of-domain LMs for selection. We see this configuration,
“Double Extension,” on the fifth row of the table.

Table 3 shows WER resulting from using a subset of
these LMs in a recognition task.

Technique % Retained Sent. (ppl)
1 2 5 6 10

Moore, et al 222.7 202.4 190.3 190.0 190.5
Enhancements 211.9 195.4 185.3 184.5 185.9
Ext. Enhancements 208.1 192.9 183.4 183.3 185.0
Extension 206.2 191.9 183.0 182.5 184.4
Double Extension 203.0 189.1 181.3 181.0 183.3

Reference % Retained Sent. (ppl)
100

No selection 301.9

Table 2: Perplexity on TEST of the LMs selected using a
reasonable in-domain set

Technique % Retained Sent. (WER)
1 5 10

Moore, et al 30.5 29.1 29.5
Enhancements 30.2 28.7 28.9
Double Extension 29.9 28.2 28.5

Reference % Retained Sent. (WER)
100

No selection 29.9

Table 3: Word error rate on WERTEST of LMs selected
using a reasonable in-domain set

In our second set of experiments, we simulated the case
of hard conditions on the availability of in-domain data. We
used a very small set of only one thousand sentences for our
in-domain set as follows. First we split DEV into two parts,
each part begin scored using the other. Then we merged them
and selected the top-scoring one thousand sentences. This
way, we assume that the resulting small set would be concen-
trated on the dominating topic of the whole set. The results
of using this small in-domain set are summarized in Table 4.

We see that in the case of the small in-domain set, our
method outperforms the baseline of [2] by between 40 and
60 perplexity points, and up to 2 percentage points abso-
lute in terms of WER. For the reasonably-sized in-domain
set, using enhancement alone gives larger gains than the in-
cremental gains made by applying extension as well. For
the small in-domain set, applying extension adds incremen-
tal gains comparable to the initial gains from enhancement.

Furthermore, we tested some of our selected data in a
machine translation task. This is a phrase-based statistical
system, where the translation model is trained on EPPS, NC,
TED and BTEC English-German parallel corpora. It was
tuned and tested on portions of a computer science lecture.
The development set is around one thousand pairs whereas
the test set is about two thousand. The weights of the log-
linear model were tuned for a system using an LM trained on
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Technique
% Retained Sent.

(ppl) (WER)
5 10 5 10

Moore, et al 297.3 256.3 32.4 31.3
Ext. Enhancements 267.0 237.7 31.7 30.8
Double Extension 230.1 216.4 30.2 29.8

Table 4: Perplexity and WER on TEST and WERTEST of
LMs selected using a reduced in-domain set

a completely different set. These were then kept unchanged
for all tested models. The results of the translation exper-
iments are shown in Table 5. Both enhancement and ex-
tension always outperformed the baseline. However for the
cases of 10 and 20 percent retained sentences, the extension
did not bring any additional gain.

Technique % Retained Sent. (BLEU)
5 10 20

Moore, et al 13.24 13.04 12.84
Enhancements 13.47 13.19 13.06
Extension 13.52 13.16 13.00

Reference % Retained Sent. (BLEU)
100

No selection 12.47

Table 5: BLEU scores for translation results

Finally, we performed some additional experiments in or-
der to examine the extension in all ngram orders and the us-
age of associations induced from monolingual corpora. Table
6 shows the corresponding results. The first row repeats the
last one in Table 2. The second row shows the results of a
full extension, where we use the same principle as detailed
in Section 3.4 in order extend words of the LM. However,
here we extend all orders from 1 through 4 unlike the previ-
ous experiments where we only extended the unigrams. The
results of monolingual-based associations are shown in the
third row. In this case, the association is equivalent to the
cosine similarity between word vectors (as explained in Sec-
tion 3.3.) These vectors are computed using a large corpus
(29 million sentences and 0.4 billion tokens). To do so, we
use word2vecwith continuous bag of words as the learning
algorithm [21].8 The size of the vectors is set to 500 and the
context window to 10. Words appearing less than 5 times are
discarded and the number of iterations used is 15.

It follows from these last experiments that both full ex-
tension and word2vec associations have no important ef-
fect on the performance. However, these can be considered
as baselines for future experiments as they lack thorough hy-
per parameter tuning.

8http://code.google.com/p/word2vec/

Technique % Retained Sent. (ppl)
1 5 10

Double Extension (only unigrams) 203.0 181.3 183.3
Full extension 203.0 181.4 183.4
word2vec associations 203.3 181.7 183.6

Reference % Retained Sent. (ppl)
100

No selection 301.9

Table 6: Perplexity on TEST of additional experiments

6. Conclusion
We presented several extensions and enhancements to the
state-of-the-art in-domain data selection method of [2]. Our
techniques bring consistent improvements to the perfor-
mance of the LM, given enough similarity between the test
set and the set used for selection. Improvement is notice-
able for a reasonably-sized in-domain set and it is quite more
noticeable still for very small in-domain sets, where in terms
of perplexity we substantially outperform the state-of-the-art.
In both ASR and SMT scenarios, our techniques proved ef-
ficient by aggressively reducing the size of the training data.
At the same time, they consistently improved the system’s
performance or in the worst case kept it unchanged.

While the automatically computed associations are
cheaper to obtain, their hand-made counterparts are likely to
be more accurate. Consequently, we plan to perform a com-
parison between these two for English, as it disposes of the
largest hand-made thesaurus (WordNet).

It might be questioned why the associations used
throughout this paper were inferred from general domain cor-
pora, as this may lead to undesirable associations for a spe-
cific domain. Therefore, we would like to explore the effect
of a pre-selection process over the data used to compute the
association lexicon.

For the very small in-domain data sets, we think that bet-
ter results could be obtained if one follows a bootstrapping
strategy. That is, we repeatedly perform selection and add
the best scoring sentences to the in-domain set and use the
resulting set as the in-domain set for the next run.

We found both full extension and word2vec associa-
tions to be more expensive than the alignment-based unigram
extension. Full extension suffers from a combinatorial ex-
plosion when the vocabulary size is reasonable. word2vec
associations, on the other hand, are very slow to compute
since we need to test each pair of words. We think we could
improve this by performing the extension on a carefully se-
lected subset from the vocabulary.

Another question we need to look into is the way we con-
vert cosine similarities of word2vec into appropriate asso-
ciations. The values we get from our current implementation
are almost uniform. This might explain why this approach
could not outperform the alignment-based associations, in
spite of a much larger training corpus.

Lastly we close by noting that the tools developed for
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lexicon creation are freely available on Github.9
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ABSTRACT

Previous work has shown that training the neural networks for
bottle neck feature extraction in a multilingual way can lead to
improvements in word error rate and average term weighted
value in a telephone key word search task. In this work we
conduct a systematic study on a) which multilingual training
strategy to employ, b) the effect of language selection and
amount of multilingual training data used and c) how to find a
suitable combination for languages. We conducted our exper-
iment on the key word search task and the languages of the
IARPA BABEL program. In a first step, we assessed the per-
formance of a single language out of all available languages
in combination with the target language. Based on these re-
sults, we then combined a multitude of languages. We also
examined the influence of the amount of training data per lan-
guage, as well as different techniques for combining the lan-
guages during network training. Our experiments show that
data from arbitrary additional languages does not necessarily
increase the performance of a system. But when combining
a suitable set of languages, a significant gain in performance
can be achieved.

Index Terms— bottle neck features, multilingual acous-
tic modeling, low-resource ASR, time-delay neural networks,
data selection

1. INTRODUCTION

The goal of IARPA’s program BABEL1 is to build systems for
keyword search (KWS) in telephone speech in a rapid manner

Supported by the Intelligence Advanced Research Projects Activity
(IARPA) via Department of Defense U.S. Army Research Laboratory
(DoD / ARL) contract number W911NF-12-C-0015. The U.S. Govern-
ment is authorized to reproduce and distribute reprints for Governmental
purposes notwithstanding any copyright annotation thereon. Disclaimer:
The views and conclusions contained herein are those of the authors and
should not be interpreted as necessarily representing the official policies or
endorsements, either expressed or implied, of IARPA, DoD/ARL, or the
U.S. Government. This effort uses the IARPA Babel Program language
collection releases IARPA-babel{102b-v0.4,103b-v0.3,101b-v0.4c,201b-
v0.2b,203b-v3.1a,104b-v0.4bY,106-v0.2f,204b-v1.1b,105b-v0.4,107b-
v0.7,206b-v0.1d}.

1http://www.iarpa.gov/index.php/research-programs/babel

and on limited amounts of data. Within the program progress
is measured through annual evaluations. For the primary con-
dition of the evaluation at the end of second year performers
were only allowed to use 10h of transcribed data in the target
language.

Since state-of-the-art key word search systems make
use of Large Vocabulary Continuous Speech Recognition
(LVCSR) systems, the task of rapidly building KWS systems
includes the task of rapidly building LVCSR systems.

Building LVCSR systems for a new language requires
large amounts of data in the target language in order to esti-
mate the system’s model parameters in a robust way. While
the Babel evaluation’s primary condition only allows for us-
ing data from the target language, another condition exists
in which participants are allowed to use any data available
within the BABEL program from any language in addition to
the limited data of the target language.

In previous work we have shown for the Babel task that
using multilingual data for training the neural network of the
bottle neck feature (BNF) component of the pre-processing
of the LVCSR system can either reduce training time [1] or
the system’s word error rate (WER) [2]. To the best of our
knowledge, there has not been a concise analysis about which
languages and data to choose. We therefore conducted a de-
tailed study of how to combine the different languages within
the BABEL program to improve a system given a specific tar-
get language.

In this paper we conduct a systematic series of experi-
ments on training multilingual BNFs for the Babel task study-
ing three aspects: a) which is the best technique for training
the multilingual BNFs, b) is it more important to increase the
total amount of training data or to vary the number of lan-
guages in BNF training, c) which is the best selection of lan-
guages for multilingual training.

The rest of the paper is structured as follows. In Section 2
we review related work. Then in Section 3 we describe how
we trained our DBNFs. Section 4 describes our experimental
set-up while Section 5 presents our experimental results.
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2. RELATED WORK

2.1. Bottle Neck Features Extracted via Deep Belief Neu-
ral Networks

State-of-the-art LVCSR systems often use deep belief neural
networks (DNNs) [3] for extracting features with the help of
deep belief bottle neck features (DBNFs) [4, 5, 6]. For DBNFs
a deep-belief network with several hidden layers and one bot-
tleneck layers is trained, that classifies extracted feature vec-
tors as, e.g., phonemes, context-dependent phonemes, or even
model states. The layers of the DBNF are usually pre-trained,
either by using Restricted Boltzmann Machines (RBMs) [4]
or denoising auto-encoders [7]. After that, back-propagation
training, in one of several possible variants, e.g., stochastic
gradient descent combined with mini-batch training, is ap-
plied which we will call fine-tuning in this paper.

Past research has also shown that the use of Time Delay
Neural Networks (TDNNs) for DBNF front-ends, which we
sometimes also call shifting DBNFs, leads to performance
improvements over the standard feed-forward networks used
for DNNs [2].

2.2. Multilingual DBNFs

Recently the concept of multilingual acoustic modeling has
also been extended to feature extraction via DBNFs. This is
motivated by the fact that neural networks have been shown
to be good at learning shared hidden representations across
different tasks. With respect to multilingual modeling for
DBNFs, the different languages that might partly overlap and
partly differ in their phoneme inventory correspond to the dif-
ferent tasks, while the aspects common to the sounds across
languages are the hidden aspects learned by the network. E.g.,
[8] has shown that the pre-training stage of the training of DB-
NFs is language independent. Training multilingual DBNFs
can either be done by using one shared phoneme set [9], as
it is done for ML-Mix [10], or by using different language
dependent output layers, one for every language [11, 12, 13,
14]. The latter is possible, as the output layer is later dis-
carded anyway and only the bottle neck layer of the network
is retained for constructing the final feature vector. And just
like the regular DBNFs, DBNFs using TDNNs can also be
trained in multilingual fashion and lead to performance im-
provements [2].

Several strategies combining data from different lan-
guages have been explored. Thomas et al. analyzed the
influence of varying the amount of data used from the target
language in [15]. They built a multilingual system using a
fixed amount of data from two training languages and studied
the influnce of adding different amounts of data from the
target language. Knill et al. merged the data from different
languages during training thus creating a common phoneme
set in [16]. They used a fixed set of multilingual data for
training the acoustic model as well as the neural network

and obtained an increase in performance. Grezl et al. used a
similar approach in [17]. They trained a neural network using
a fixed set of multilingual training data in combination with a
limited set of data from the target language for adaptation.

While the work cited here has shown that multilingual
training of DBNFs can lead to performance improvements, to
the best of our knowledge no systematic study has been con-
ducted that answers the three questions we aim to answer in
this paper: a) is it more important to have more training data
or to vary the number of languages in training, b) what is the
best combination of multilingual training and the two stages
of pre-training and fine tuning in DBNF training, c) and how
important is the selection of languages when performing the
multilingual training.

3. DEEP BOTTLE NECK FEATURES

3.1. Input Features for the DBNF Neural Network

There are several approaches towards the preprocessing the
audio data before feeding it into the DBNF network. Among
them are features such as mel-scaled cepstral coefficients
(MFCC) and logarithmic mel-scaled spectral coefficients
(lMel). Preliminary experiments have shown, that the use of
MFCCs and lMels lead to similar results. We thus decided
to use only lMels for our experiments. In addition to lMel
features, we also include features derived from the fundamen-
tal frequency variation [18] and a pitch tracker[19]. These
features are then combined and used as input to the DBNF
neural network.

3.2. Deep Bottle Neck Features

The use of Deep Bottle Neck features as part of a speech
recognition system has first been described by Grézl at al. in
[20]. The common approach is to use a feed-forward neural
network which is trained as a discriminative feature extractor.
Our network contains a narrow, so called bottle neck, hidden
layer. That layer consists of only a fraction of neurons in
comparison to the other layers.

This network performs a non-linear discriminative di-
mensionality reduction. It has been shown that the activation
of the bottle neck units are well suited as input features
for HMM/GMM systems leading to improved recognition
accuracy. In our set-up, we pre-train the network in an unsu-
pervised fashion using denoising auto-encoders, and fine-tune
the network via mini-batch training using stochastic gradient
descent, adapting the learning rate via the new-bob algorithm
[7].

3.3. Time-delay Neural Network Features

There are various methods and training strategies for neural
networks. In a study conducted earlier[2] it as been shown
that the use of TDNNs, which we sometimes call Shifting
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Deep Bottle Neck features (SDBNFs) leads to improvements
in performance. SDBNFs are based on the idea of a time
delay neural network[21]. The concept of this approach is
to bring the stacking of input features to the neural network
level. Here, in the forward pass of the fine tuning step, the
gradients of adjacent frames are being averaged over a win-
dow of several frames, thereby capturing the information over
a longer period in time than just a single frame [2].

3.4. Multilingual Deep Bottle Neck Features

Data from multiple languages can be included at various
stages of the neural network training. The first step in which
data can be added is the pre-training. [8] showed that the
use of multilingual data in an unsupervised way can be ben-
eficial. In our experiment, the data we use from different
languages has similar properties. It was recorded under the
same recordings conditions. Therefore, the network can learn
to extract features from human speech recorded under similar
conditions in a language independent way. The role of the
pre-training is to initially guide the network parameters into
the right direction prior to the fine-tuning. By using more
data, the network has the ability to generalize more due to the
fact that the network parameters can be estimated in a more
robust way.

The fine-tuning takes place as a second step. It offers the
possibility to add data from multiple languages as well. Like
when pre-training a network, here we also have the opportu-
nity to include data from other languages as well. The same
holds true when applying the shifting step. But since these
steps fine-tune the parameters of the network, they are some-
what more language-dependent as they need to extract fea-
tures resembling the individual sounds of a language. Thus,
the question remains at which stages to work with multilin-
gual data and at which only with the target data.

4. EXPERIMENTAL SETUP

We conducted our experiments with the help of the Janus
Recognition Toolkit (JRTk) [22] which features the IBIS de-
coder [23]. As target language in our experiments we used
Tamil, for which we trained speech recognition systems us-
ing different kinds of multilingual DBFNs. In our experi-
ments, the DBNFs are the only part trained multilingually.
The HMM/GMM system itself is only trained on the LLP
dataset (10h) from Tamil. As we wanted to focus our study to
the DBNF component of the system, we kept everything else
fixed.

We assessed the performance of the systems on the devel-
opment data set provided for Tamil. It consists of 10 hours of
audio data. The systems were evaluated using two different
metrics: Word error rate (WER) and average term weighted
value[24] (ATWV). The latter requires a set of keywords; for
this we used the given development keyword list. ATWV

gives scores in the range between 0 and 1. For better read-
ability, we multiplied the ATWV score by 100. We used a
class based language-model and an automatic segmentation.
Throughout our experiments, we keep the decoding parame-
ters identical.

4.1. Corpora

We used data from the IARPA BABEL project. The IARPA
provided data for several languages. These are: Assamese,
Bengali, Cantonese, Haitian Creole, Lao, Pashto, Tagalog,
Tamil, Turkish, Vietnamese and Zulu. Table 1 provides an
overview of all the languages used, including details about the
language family and the phoneme inventory. The languages
selected for the BABEL program cover a wide variety of dif-
ferent language families. The number of phonemes per lan-
guage ranges from 32 (Haitian Creole) to 68 (Vietnamese).
As Tamil is the target language in our experiments, we also
looked into the amount of phonemes that Tamil shares with
each language. This information is presented in the last col-
umn of table 1

Language Language Family # Ph. # Ph. w. T.

Tamil Dravidian 34 -

Assamese Indo-European 50 20
Bengali Indo-European 51 21
Hait. Creole (French) Creole 32 17
Lao Tai-Kadai 41 20
Pashto Indo-European 43 24
Tagalog Austronesian 46 20
Turkish Turkic 41 25
Vietnamese Austroasiatic 68 18
Cantonese Sino-Tibetan 37 14
Zulu Niger-Congo 47 16

Table 1: Language overview, including the language fam-
ily, size of phoneme set and amount of phonemes that each
language shares with Tamil

For each language, two data sets were provided: a lim-
ited language pack (LLP) and a full language pack (FLP).
The LLP of a language consists of 10h of transcribed con-
versational speech. The FLP of a language consists of ap-
proximately 100h of transcribed data and includes the data
from the LLP. The data itself is mainly narrowband telephone
speech sampled with 8kHz. Some languages from the second
year of the project (Assamese, Bengali, Haitian Creole, Tamil
and Zulu) include some recordings with higher, CD-quality
resolution. For our experiments, we resampled those down
to 8kHz. The recordings contain different types of noises, as
they were performed on the street, while driving a car or in an
office with some machinery running in the background.
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4.2. Baseline

The target language for our experiments is Tamil. For our
baseline, we trained a system on the LLP dataset from Tamil
only. First, we built a context-independent system from
scratch using a flatstart approach. On top of that, we built a
context-dependent system with 2,000 models.

Using that context-dependent system, we created the data
required to train a DBNF. Our DBNFs consists of five hid-
den layers. With the exception of the bottle neck layer, each
layer consists of 1,000 neurons. The bottle neck layer has
only 42 neurons. For pre-training, we are using denoising
auto-encoders with Gaussian noise and a corruption rate of
20%. To extract training data from the other languages for
the neural network training, we used the FLP per language to
train systems in a similar manner and to create that data.

In order to create forced alignments for languages other
than Tamil, we trained a context-dependent system on the
FLP dataset of that particular language. For selecting dif-
ferent amounts of training data, we randomly choose sets of
speakers resembling the defined amount of audio data.

5. RESULTS

In our results we examined three different aspects: a) whether
it is more important to use more data in multilingual DBNF
training, or whether it is more important to have data from
more, different languages; b) at which stages in the training of
DBNFs is multilingual training data helpful; c) how to select
the languages from which to train the DBNF for a specific
language.

Therefore, we initially conducted an analysis to determine
the performance of data from a single language in combina-
tion with the target language in Section 5.1. Parallel to that,
we varied in Section 5.2 the amount of data for a selection
of languages. We also investigated the use of additional lan-
guage data at different points of neural network training in
Section 5.3. Finally, we combined the best fitting languages
together and as a contrastive experiment the worst fitting lan-
guages in Section 5.4.

5.1. Combination of a Single Language with Tamil

In order to establish a baseline for multilingual DBNFs we
trained multilingual DBNFs on only two languages, by com-
bining the data from the Tamil LLP with 40h of one other
language. This will give a first impression of the usefulness
of adding training data from other languages and will show
the variance in performance depending on the exact language
that was chosen to be added. We compare the resulting WERs
against a baseline in which the DBNF was trained on Tamil
LLP only. For this experiment, we used the multilingual data
during pre-training, fine-tuning and the shifting step.

The results are shown in Table 2. One can see that the
choice of language is important for the performance of the

resulting DBNF. Some combinations lead to better perfor-
mance, while others decrease the performance. The best re-
sults can be archived using Turkish, Pashto or Haitian Cre-
ole where we see gains of up to 1.6% relative in terms of
WER over the monolingual baseline. Similar gains can be
observed for ATWV. Here the best system (Turkish) improves
from 2.67 to 3.96. However in the worst case, when choos-
ing Vietnamese as additional language, the WER increases by
4.7% relative, while ATWV drops to -1.34.

The gains and losses correspond to some degree with the
amount of shared phonemes between Tamil and each lan-
guage. As shown in Table 2 the best fitting languages (Turk-
ish and Pashto) share the largest amount of phonemes with
Tamil, whereas the worst fitting languages (Vietnamese, Can-
tonese and Zulu) share the least phonemes with Tamil. But
the amount of shared phonemes should only be considered as
an approximation of the expected performance gain since for
example Haitian Creole fits equally well to Tamil like Ben-
gali and Pashto, although it only shares 17 phonemes with the
target language.

Language WER ATWV # Ph. w. T.

Baseline 82.6 2.67 -

+ Assamese 82.7 3.00 20
+ Bengali 81.5 3.26 21
+ Hait. Creole 81.5 3.82 17
+ Lao 82.3 2.97 20
+ Pashto 81.5 3.48 24
+ Tagalog 82.0 3.40 20
+ Turkish 81.3 3.96 25
+ Vietnamese 86.5 -1.34 18
+ Cantonese 83.3 1.53 14
+ Zulu 84.6 -0.04 16

Table 2: Tamil LLP plus additional 40h of another language.
The last column shows the amount of phonemes that each
language shares with Tamil

5.2. Varying the Amount of Additional Data

In the next experiment, we looked into varying the amount
of foreign language data to Tamil LLP. Just as in the experi-
ment before we added only one language to the Tamil training
data, but this time either added the FLP (ca. 100h), 40h or 10h
of training data of that language. We performed these experi-
ments with the languages from the second year of the BABEL
program. We added the language data to the whole training
process of the neural network, including the pre-training, fine-
tuning and shifting step.
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Language FLP 40h 10h

Assamese 82.4 / 2.54 82.7 / 2.37 82.0 / 3.28
Bengali 82.0 / 2.61 81.5 / 3.26 81.7 / 3.03
Hait. Creole 82.2 / 2.30 81.5 / 3.82 81.6 / 3.14
Lao 82.5 / 2.20 82.3 / 2.97 81.6 / 3.31

Table 3: Use of different amounts of data in combination with
Tamil LLP. The number on the left denotes WER, the one on
the right ATWV.

Table 3 shows the performance of the resulting systems.
The results show that selecting the right amount of training
data in addition to the 10h of Tamil training data is also im-
portant. Using all available data per language leads to per-
formance degradation over the baseline. Matching the 10h
of Tamil data with 10h of data from another language always
leads to improvements over the baseline. For two out of the
four languages taking 40h instead of 10h improves system
performance even further, while for the other two languages
this seems to be already too much training data, as perfor-
mance starts to degrade again.

5.3. Methods of Using Data from Additional Languages

There are several steps in the training process of the neural
network at which training data is used and therefore data from
multiple languages can be added. Our training setup for neu-
ral networks consists of up to four steps: Pre-training, fine-
tuning, shifting and again a fine-tuning step. For this exper-
iment, we trained the networks used in three different ways,
whereas multilingual data is being used in more and more
steps: a) Using multilingual data only during pre-training,
then performing the fine-tuning and shifting using data from
Tamil LLP only. b) Using multilingual data for pre-training,
fine-tuning and shifting. c) Using multilingual data for pre-
training, fine-tuning, shifting and adding a fine-tuning step
using data from Tamil LLP only.

This time we also looked at not only adding one language,
but multiple languages to the DBNF training. We used 40h
of data per language and the LLP for Tamil. Again, as in
the previous experiment, we used data from the Babel second
year languages Haitian Creole, Lao, Assamese and Bengali.
This results in up to 160h of training data in addition to the
10h of data from the target language Tamil.

H H+L H+L+A H+L+A+B

a) 82.5 / 2.18 83.3 / 1.47 82.3 / 2.93 82.2 / 2.42
b) 81.5 / 3.82 81.2 / 3.63 80.8 / 4.06 80.6 / 4.05
c) 81.2 / 3.85 80.7 / 4.13 80.8 / 4.34 79.9 / 5.05

Table 4: Tamil LLP plus additional languages (Haitian Cre-
ole, Lao, Assamese and Bengali) and training methods: a)
ML pre-training, b) ML pre-training and shifting, c) addi-
tional fine-tuning on Tamil LLP after shifting. The number
on the left denotes WER, the one on the right ATWV.

As shown in Table 4, using the multilingual data in set-up
a) (only for pre-training) yields only small gains, if at all. Set-
up b) (using the multilingual data not only during pre-training,
but also for fine-tuning and shifting) results in a gains of per-
formance in all cases. The WER decreases up to 2.5% rela-
tive and the ATWV increases by 2.16. After applying another
round of fine-tuning on Tamil only, and thus resulting in set-
up c), performance is increased even further, by 0.5% relative
in Terms of WER, and 1.0 in terms of ATWV.

As a general result, using additional data at all steps of the
neural network training increases the performance the best.
Likewise does an extra fine-tuning step on the target language
after the multilingual training improve system performance
further.

5.4. Combining Multiple Languages

Following our initial experiments using multiple languages
and determining the performance of individual languages in
combination with Tamil, we created two sets of four lan-
guages to do a first investigation into the best combination
of multiple languages. One set consists of the best four lan-
guages according to Section 5.1. The second set contains the
worst four languages. The languages are listed in Table 5.

Best fitting Worst fitting

Turkish Vietnamese
Hait. Creole Zulu
Pashto Cantonese
Bengali Assamese

Table 5: Overview of languages fitting best and worst to
Tamil. The best fitting languages are sorted starting with the
best fitting language, the worst fitting languages are starting
with the worst fitting language.

For this experiment, we use two schemes to determine the
performance of the combination of the different languages.
First, we used 40h per language, resulting in an additional
amount of data of 40h, 80h, 120h and 160h of speech data.
In a second set of experiments, we kept the amount additional
data fixed to 40h, resulting in an amount of data per speech
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depending on the number of additional languages. This re-
sults in an amount of 40h, 20h, 13h and 10h of additional
data per language .

Language 40h p. l. 40h total # Ph. w. T.

Baseline 82.6 / 2.67 82.6 / 2.67 -

T 81.3 / 3.96 81.3 / 3.96 25
T+H 81.0 / 4.50 80.9 / 4.21 25
T+H+P 80.3 / 5.41 80.5 / 4.66 28
T+H+P+B 79.7 / 5.65 79.9 / 5.52 28

Table 6: Use of additional languages (Turkish, Haitian Cre-
ole, Pashto and Bengali) with either 40h of data per language
or 40h in total for all additional languages. The number on
the left denotes WER, the one on the right ATWV. The last
column shows the amount of phonemes shared with Tamil.

The results for combining the best systems are shown in
Table 6. Integrating the best four languages into system train-
ing in addition to Tamil LLP decreases the WER by 3.6%
relative and improves ATWV by 2.98. The results show that
the more languages one adds, the better the performance gets.
The difference between using 40h per additional languages
and 40h of additional data in total is marginal. We see this as
an indicator that the total amount of data used is not as impor-
tant as the variety in the languages used for the multilingual
training. Thus, when faced with the question of whether it
is better to collect more data in few languages or more lan-
guages with fewer data, it is better to go for language diver-
sity. The amount of shared phonemes corresponds here to
some extent to the gain in recognition performance. Combin-
ing multiple languages increases the phoneme coverage of the
target language.

Language 40h p. l. 40h total # Ph. w. T.

Baseline 82.6 / 2.67 82.6 / 2.67 -

V 86.5 / -1.34 86.5 / -1.34 18
V+Z 82.4 / 1.98 82.5 / 1.91 20
V+Z+C 82.0 / 3.05 81.9 / 3.19 22
V+Z+C+A 81.6 / 3.90 81.7 / 3.85 24

Table 7: Use of additional languages (Vietnamese, Zulu,
Cantonese and Assamese) with either 40h of data per
language or 40h in total for all additional languages. The
number on the left denotes WER, the one on the right ATWV.
The last column shows the amount of phonemes shared with
Tamil.

When comparing the results of adding the best languages
in Table 6 against the results in Table 7 where we added
the worst languages, one sees that in the end, when adding
enough languages, also adding bad performing languages

gives gains over the baseline. Adding more languages in-
creases the coverage of the phonemes here as well. The
observed gain is comparable to using Pashto alone which has
the same amount of shared phonemes with Tamil.

As described in section 2.2, other have also made use of
the different phoneme sets by combining them. Although we
compare the different phoneme sets, our system uses only
the phonemes from the target language. We do not use the
phonemes from the other languages explicitly. They were
only used implicitly during the network training as target
states while fine-tuning the network.

6. CONCLUSION AND OUTLOOK

In this work we have examined the use of multilingual DB-
NFs for Tamil speech recognition on the BABEL task. We
have performed experiments to give insight into three ques-
tions: a) which is the best technique for training the multi-
lingual DBNFs, b) is it more important to increase the total
amount of training data or to vary the number of languages in
DBNF training, c) which is the best selection of languages for
multilingual training.

The experiments show that using multilingual data at all
stages of our DBNFs (pre-training, fine-tuning, shifting stage)
gives the best performance. Also, the total amount of training
data is not as important as the variety of the languages in the
multilingual training dataset. Some experiments suggest that
adding too much data might from a certain point on decrease
system performance again.

With respect to selecting suitable languages we compared
the strategy of selecting those languages that give the best im-
provements when combined individually with the target lan-
guage against selecting those that give the worst. Results
show that selecting the best performing languages seems to
be a reasonable strategy.

With respect to the question of how to select suitable lan-
guages, more experiments need to be performed. We have
identified the amount of shared phonemes as a first indicator
to predict the performance of the resulting system. But our
work has also shown that additional metrics are required. Our
goal is therefore to examine more strategies and try to find
good strategies that are computationally in-expensive.
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Abstract

Syntactic parsing is a fundamental natural language process-
ing technology that has proven useful in machine translation,
language modeling, sentence segmentation, and a number of
other applications related to speech translation. However,
there is a paucity of manually annotated syntactic parsing
resources for speech, and particularly for the lecture speech
that is the current target of the IWSLT translation campaign.
In this work, we present a new manually annotated treebank
of TED talks that we hope will prove useful for investiga-
tion into the interaction between syntax and these speech-
related applications. The first version of the corpus includes
1,217 sentences and 23,158 words manually annotated with
parse trees, and aligned with translations in 26-43 different
languages. In this paper we describe the collection of the
corpus, and an analysis of its various characteristics.

1. Introduction

Syntactic parsing is widely considered as a useful compo-
nent of natural language processing systems, not the least of
which being machine translation [1, 2]. While a large part
of the work on these applications has focused on the written
word, we can assume that the fundamental principles behind
syntax’s success in these applications will also carry over to
spoken language as well.

The great majority of recent work on syntactic parsing
has been based on the statistical paradigm, in which the pa-
rameters of the parser are estimated from treebanks of man-
ually annotated parse trees. In English, the standard data
set for estimating these parsers is the Wall Street Journal
section of the Penn Treebank [3], consisting of written lan-
guage from newspapers. However, as there are large differ-
ences between written language and spoken language, there
have also been some efforts to create resources for spoken
language, including the Penn Treebank annotations of ATIS
travel conversation and Switchboard telephone conversation
data, as well as the OntoNotes [4] annotation of broadcast
news and commentary. While these corpora mainly focus on
informal speech or news, spoken monologue in the form of
talks presented to an audience is also an attractive target for
speech processing applications. In particular, the talk data

from TED1 has been used as a target for much research, most
notably the IWSLT evaluation campaigns [5].

In this work, we present the NAIST-NTT TED Talk Tree-
bank, a new manually annotated treebank of TED talks that
we hope will prove useful for investigation into the interac-
tion between syntax and speech-related applications such as
speech translation. The first version of the corpus consists
of a total of 10 talks, consisting of approximately 125 min-
utes of audio amounting to 1217 sentences. All sentences
are manually annotated with parse trees following the stan-
dard Penn Treebank format. To allow for examination of the
interaction between syntax and speech, all sentences are au-
tomatically time aligned with the corresponding speech file.
In addition, to allow for multi-lingual research, we collected
and sentence-aligned TED subtitles in anywhere from 26 to
43 languages per talk, with a total of 18 languages having
translations for every talk.

In this paper, we present the details of how we con-
structed the corpus, including data collection, treebank an-
notation, speech time alignment, and multilingual sentence
alignment. We also provide an analysis of the corpus, includ-
ing its various characteristics and to what extent they differ
from existing speech and text corpora, as well as the accuracy
of an existing syntactic parser on the corpus. The corpus has
been made publicly available for download under the Cre-
ative Commons License at
http://ahclab.naist.jp/resource/tedtreebank

2. Corpus Data
In this section, we describe the data used as material for the corpus.

2.1. English Data

Table 1: Details of the annotated data.

Set Talk Min. Sent. Word
All 10 125.07 1,217 23,158

Train 7 87.23 822 16,063
Test 3 37.84 395 7,095

The English text and speech data were gathered from TED
Talks. Specifically, we gathered data starting with the beginning of

1http://www.ted.com
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the May 2012 version of the WIT3 [6] training corpus for English-
Japanese. From this data, for the first version of the treebank we
chose 10 talks, the details of which are shown in Table 1.2

As the original TED data is subtitles, it is necessary to group
these subtitles into sentences before performing annotation. In the
creation of the corpus, we used the standard English sentence seg-
mentation provided by the WIT3 data.3

In addition, when using a corpus for experiments, it is desirable
to have a “standard” split between the training and testing data. As
this standard, we designated a split of the first 7 talks as training
data, and the other 3 talks as test data, resulting in an approximately
2/3 of the corpus for training, and 1/3 for testing when counting the
number of sentences. This is also the split used in the analysis in
Section 5.

With regards to the characteristics of the speeches and the
speakers, the collected data is, like TED as a whole, quite diverse.
Of the ten talks, 9 have a single speaker, and 1 has two speakers. Of
these 11 speakers, 7 are men, and 4 are women.

2.2. Multilingual Data

In addition, because most of the talks in the collection have been
translated into several other languages, we also downloaded the sub-
titles for all other languages in which they existed. As a result, for
each talk we obtained subtitles in 26-43 different languages. For a
total of 18 languages (shown in Table 2), this resulted in subtitles
for all the parsed talks, and for 37 languages there were subtitles
for some, but not all of the talks. We further combined these sub-
titles together into units that correspond to each English sentence,
creating a sentence-aligned corpus between all of the languages.4

Table 2: Languages for which subtitles existed for all 10 an-
notated talks.

Arabic, Bulgarian, German, Greek, Spanish, French,
Hebrew, Italian, Japanese, Korean, Dutch, Polish,

Brazilian Portuguese, Romanian, Russian, Turkish,
Simplified Chinese, Traditional Chinese

While there exist other corpora of sentence-aligned TED talks
[6], and other corpora of bilingually aligned syntax trees [7], to our
knowledge this is the first corpus with manually annotated syntax
trees in English and translations into a large number of languages,
and also the first multilingually aligned treebank of the spoken
word. We hope that this data will be of use for investigations into
the effect of syntax on speech translation and other cross-lingual
tasks.

3. Creation of Parse Trees
The first, and most labor-intensive annotation task was the creation
of manual parse trees for the English sentences.

2We are currently in the process or annotating more data, which will be
released as a second version of the corpus on completion.

3This segmentation standard groups multiple subtitles into single sen-
tences, but never splits subtitles. Thus there are rare cases where a subtitle
containing multiple sentences results in unsegmented sentences in the data.

4Of course, there are also a few cases where a single English sentence
corresponds to multiple sentences, or less than one sentence in the foreign
language.

3.1. Annotation Standard

The most important part of creating a treebank is coming up with
an appropriate annotation standard. Fortunately, the extensive 318-
page annotation standard for the Penn Treebank exists,5 and we
choose to adopt this standard to maintain intercompatibility with the
Penn Treebank. Specifically, we follow the actual documentation of
the Treebank II annotation standard, but only annotate constituent
labels (e.g. “NP”), omitting tagging of syntactic roles (e.g. the “-
SUBJ” in “NP-SUBJ”) or null elements (e.g. the omitted subject
due to wh-movement in questions). We chose this annotation stan-
dard because most treebank parsers, such as the Berkeley parser, are
trained on and generate annotation without constituent labels or null
elements.

We also make one minor modification of the treebank standard
tailored to the speech that appears in TED. Specifically, within TED
talks, there are many cases in which the speaker quotes the words
of another. The quote annotation in the Penn Treebank, in con-
trast to the annotation of other phenomena such as parenthesized
expressions, simply treats each element of a quote as elements of
its surrounding clause. In order to make the boundaries of quotes
more explicit and easy to recognize, we add a single node with the
symbol “QUOTE” showing the boundaries of a quote, as is done
for parenthesized expressions. It should be noted that this change
is automatically reversible, and the Penn Treebank annotation can
be completely recovered by simply removing the QUOTE node and
promoting its children.

An example of an annotated tree, including a QUOTE annota-
tion is shown in Figure 1.

3.2. Annotation Process

Treebank annotation is an extremely time consuming process, par-
ticularly when the entirety of the tree has to be created from scratch.
Fortunately, relatively accurate treebank parsers already exist, al-
lowing us to create an initial parse first using an off-the-shelf parser,
then have annotators spend their time fixing the errors of the exist-
ing parser. In this case, we use the Berkeley Parser6 [8] to create an
initial parse.

After this, we hired annotators to go through the trees and anno-
tated them based on the standard described in the previous section.
The annotators are well versed in annotation of linguistic data, and
were given the standard and asked to follow it closely. After receiv-
ing this initial annotation result, the first author of the paper went
through the entirety of the corpus, checking once more for any re-
maining errors. Finally, the trees were automatically checked for
inconsistencies such as duplicated unary rules, or trees that were
judged as a warning or error according to the phrase structure con-
version tools of Johansson and Nugues [9].

4. Speech Time Alignment
Because the treebank described in this paper is of spoken lan-
guage, the correspondence between syntactic trees and features of
the speech is of particular interest. For example, it has been previ-
ously noted that prosody and syntax have a close relationship [10],
and this corpus could be used to perform further investigations into
these and other issues.

In order to create the time alignment of each word in the speech,

5http://www.cis.upenn.edu/˜treebank/
6https://code.google.com/p/berkeleyparser/
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Figure 1: An example tree from TED including QUOTE annotation.

we prepared the data according to an automatic process. In the first
step of the process, we performed forced decoding using the Kaldi
decoder [11] with a model trained for the IWSLT speech recognition
task [12]. In addition, as there are small differences between the
transcripts used in forced decoding and the actual subtitles, due to
factors such as punctuation deletion and normalization of numbers,
we further aligned the times found in the forced alignment to the
words in the subtitles, which were used in the annotation of the
parse trees.

5. Analysis
In this section, we describe our analysis of the prepared corpus,
first listing statistics of the trees in the corpus, measuring parsing
accuracy and analyzing parsing errors.

5.1. Corpus Statistics

First, in this section we describe statistics of the collected parse trees
for TED in comparison to the Wall Street Journal (WSJ) section of
the Penn Treebank and the Broadcast News (BN) and Broadcast
Commentary (BC) sections of OntoNotes. In particular, we focus
on the differences in complexity of the sentences, as well as the
different types of syntactic structures that appear in the sentences.

5.1.1. Syntactic Complexity

The first and most simple statistic that comes to mind regarding
the complexity of the sentences is sentence length. In Figure 2 we
show a histogram of the sentence lengths for the two corpora (after
tokenization). From this figure we can see, perhaps as expected,
that there is a larger number of long sentences in the newspaper
text of WSJ. However, there are still a significant number of long
sentences in TED with approximately 40% of sentences being 20
words or more. Compared with the two corpora of broadcast news
and commentary, we can see that the length characteristics of the
corpus are quite similar to those of broadcast news, and significantly
longer than the more spontaneous broadcast commentary.

In addition to the length, it is also possible to examine the syn-
tactic trees directly to understand the syntactic complexity of the
sentences. There are a number of measures of syntactic complex-
ity, and according to Roark et al. [13], who examine the correlation

Figure 2: A histogram of sentence lengths in Wall Street
Journal (WSJ), Broadcast News (BN), Broadcast Commen-
tary (BC), and TED.

of several syntactic complexity measures with neuropsychological
tests, two measures show a significant correlation with psycholog-
ical factors such as the burden on memory. The first is simply the
ratio of internal tree nodes to words in the sentence. The second
is Frazier’s measure of syntactic complexity [14], which is inspired
by the number of syntactic elements that must be held in working
memory. Specifically, it is defined as the average distance between
a terminal node in the syntactic tree and its first ancestor that is not
a leftmost sibling, with sentence nodes counting 1.5 times as much
as other nodes (more details can be found in the referenced paper).

Table 3: Syntactic complexity for sentences of length 10-29.

Measure WSJ BN BC TED
Frazier 0.766 0.836 0.884 0.832
Nodes/Word 2.781 2.855 2.897 2.874

In Table 3 we show the values of these two complexity mea-
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Figure 3: The distribution of pronoun types for each corpus.

sures for the 4 corpora under consideration, limiting our analysis
to sentences of length 10-29 to reduce any artificial effects of ana-
lyzing different length sentences. From the results, we can see that
WSJ has the lowest scores, BC has the highest scores, and TED and
BN are relatively similar. While it seems somewhat counterintuitive
that the more conversational corpora have more syntactic complex-
ity, in fact news text is carefully planned and edited, often resulting
in sentences that are easier to interpret than those in more informal
speech.

5.1.2. Stylistic Difference

As the previous statistics show that the complexity of sentences in
the TED corpus are similar to those of broadcast news, it is of in-
terest whether there are stylistic differences that set it apart. It is
somewhat difficult to pick apart stylistic differences quantitatively
as simple statistics such as unigram distributions conflate stylistic
and topical differences, so we calculated a variety of statistics and
here focus on two simple statistics in which TED stood out.

First, in Figure 3, we show the difference in the distribution of
singular pronouns, grouped into the first person (I/me), second per-
son (you), third person gendered (he/she/him/her), and third person
ungendered (it). From this figure, we can see that TED is unique
in having more second person pronouns than any other category,
demonstrating how TED speakers attempt to reference and engage
their audience. In this way, the corpus is most similar to BC, which
also contains a large number of 1st and 2nd person references, and
in stark contrast to news, for which the large majority of pronouns
are in the 3rd person.

Table 4: Percentage of present, past, and progressive verbs.

Tense WSJ BN BC TED
Present 42.8 50.2 56.1 64.0
Past 38.4 29.7 27.7 18.7
Prog. 18.7 20.1 16.1 17.3

Second, in Table 4, we show statistics about the tense of verbs,
whether in the present (VBP/VBZ), past (VBD), or progressive
(VBG) tense. From this table, we can see that as we move from

news to conversation to TED, the number of past tense verbs de-
creases, and the number of present tense verbs increases. This
marks a notable difference between news, which often looks back-
wards on the past, and the TED talks, which are often focused on
what the speaker is doing now, or looking forward into the future.

In summary of the analysis, TED represents broadcast news in
sentence complexity, but is also close to broadcast conversation in
two stylistic characteristics. Thus, TED is somewhat different from
these other genres, and thus manually annotated syntactic resources
for TED are likely to give a benefit in the processing of TED talks
and other similar monologues. In the following section, we examine
this further in parsing experiments using the TED treebank.

5.2. Parsing Experiments

In order to test the accuracy of automatic parsing over the TED
treebank, we performed parsing experiments, comparing with the
WSJ section of the Penn Treebank.

5.2.1. Experimental Setting and Accuracy

We used two different sets of training data. The wsj-train data in-
cludes WSJ sections 2 to 21, which is the standard setting for train-
ing parsers on the Penn Treebank. The wsj+ted-train data also in-
cludes TED treebank training data (the first 7 talks, as specified in
Section 2.1) in addition to wsj-train. We also prepared two data
sets for testing each model. The wsj-test data includes WSJ sec-
tion 23, the standard testing setting for evaluating syntactic parsers
on WSJ. and ted-test data includes the TED treebank testing data
(again specified in Section 2.1 as the last 3 talks). All “QUOTE”
tags in the TED treebank are removed before training and testing,
in order to ensure consistency with WSJ.

The Berkeley Parser [8] is used to train a latent annotated prob-
abilistic context free grammar (PCFGLA) model from each of the
training data sets and to generate a one-best parse of test data using
trained model. We used EVALB7 to evaluate parsing accuracy of
each result in the form of bracketing F1 measure.

Table 5 shows the bracketing F1 measure for test sentences that
have 40 words or less in each train/test data combination. Numbers
in bold indicate the model with the better accuracy using the same
test data. From these results, we can see that on the ted-test data,
the model trained using the wsj+ted-train data achieves somewhat
better performance than the model trained with only wsj-train. For
wsj-test, the difference is slim, with both models achieving largely
the same accuracy.

These results indicate that just by adding a small number of
TED sentences to the WSJ data for training, we are able to achieve
a small gain in parsing accuracy on the TED data. It should be noted
that this is the simplest possible method for domain adaptation, and
it is likely that there is still significant room for improvement by
using more sophisticated techniques to account for the fact that the
TED data is still significantly smaller than the WSJ data.

5.2.2. Individual Examples

Figures 4 and 5 show examples of parse trees of a sentence from the
test set8 trained with the wsj-train model, and the wsj+ted model
respectively. The correct parse is the same as that generated by the
wsj+ted model, with the exception that “(NN soap)” should be ”(NP

7http://nlp.cs.nyu.edu/evalb/
8The example was actually slightly shortened by removing two elements

from the long coordinate phrase to ensure that it fit on one page.
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Figure 4: Example of best parse using the wsj-train grammar.
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Figure 5: Example of the best parse using the wsj+ted-train grammar.

Table 5: Bracketing F1 measure of each parsing evaluation.
Train

wsj-train wsj+ted-train

Test wsj-test 90.41 90.38
ted-test 88.65 88.99

(NN soap)),” and “(NNP Family)” should be “(NN Family).” This
sentence has two notable characteristics.

First, there are multiple sentences in one tree, because TED data
is based on subtitles of actual talks. These multiple sentence lines
often occur when multiple sentences are included within a single
subtitle. This is in contrast to the WSJ in which each line is split
at sentence boundaries before annotation. As a result, the model
trained using only the WSJ corpus tends to misparse lines including
multiple sentences as single sentence.9 On the other hand, model
trained including the TED treebank expresses them using the (S →
S S) rule and can parse sentences with this characteristic properly,
although it does still make the mistake of determining that “Family”
is a proper noun.

Second, the model trained by wsj+ted-train data makes a better
parse of the long parallel noun phrase. In this example, the words
“penicillin and then family planning” should be immediate children
of the parent NP as in Figure 5, not an independent phrase as in
Figure 4.

9A WSJ treebank parser with an extra sentence segmentation preprocess-
ing step could also likely parse this example properly, but it this does add
additional complexity that can be largely avoided by training a model that
can handle these lines properly.

6. Conclusions
In this paper, we presented a treebank consisting of material from
TED talks, an example of spoken language monologue sparsely
covered by existing resources. The corpus consists of manually an-
notated syntactic trees, corresponding speech, time alignments, and
multilingual translations. We hope that this corpus will be of use for
examining the interaction between syntax and speech translation, or
other applications of NLP to speech.

As future work, we are currently continuing annotation of the
corpus, and plan to release an expanded second version of the cor-
pus upon completion of this annotation. We also plan on performing
more comprehensive parsing experiments using domain adaptation
techniques, and examining the effect of parsing on the accuracy on
machine translation.
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Abstract

Punctuation prediction is an important task in spoken lan-
guage translation and can be performed by using a mono-
lingual phrase-based translation system to translate from un-
punctuated to text with punctuation. However, a punctuation
prediction system based on phrase-based translation is not
able to capture long-range dependencies between words and
punctuation marks. In this paper, we propose to employ hier-
archical translation in place of phrase-based translation and
show that this approach is more robust for unseen word se-
quences. Furthermore, we analyze different optimization cri-
teria for tuning the scaling factors of a monolingual statistical
machine translation system. In our experiments, we compare
the new approach with other punctuation prediction meth-
ods and show improvements in terms of F1-Score and BLEU
on the IWSLT 2014 German→English and English→French
translation tasks.

1. Introduction
Spoken language translation (SLT) has become an important
application of automatic speech recognition (ASR) and ma-
chine translation (MT). The challenge of SLT is to translate
automatic transcribed speech rather than written text into an-
other language. In recent years, several research projects
such as QUAERO1 and EU-Bridge2 have been focussed on
speech translation. Furthmore, the increasing number of
available Android application for speech translation3 indi-
cates a growing interest in speech translation technologies
in the general public.

The translation of speech is in general divided in two in-
dependent parts. First, ASR provides a automatic transcrip-
tion of spoken words. Next, the recognized words are trans-
lated by an MT system.

As in speech punctuation is not made explicit, most ASR
systems provide an output without punctuation marks only.
Most MT systems however are trained on data with proper

1http://www.quaero.org/
2http://www.eu-bridge.eu/
3https://play.google.com/store/search?q=speech%

20translation&c=apps

punctuation and expect written text with correct punctuation
as input. Therefore, the output of ASR systems has to be
enriched with punctuation marks. In MT an accurate punc-
tuation of the input is crucial as the prediction errors affect
the translation quality. In [1], a loss of up to 4 BLEU points
was obtained if punctuation marks need to be predicted, com-
pared to correct punctuation in the input.

In recent years several methods to predict punctuation
were developed. These methods are based on n-gram lan-
guage models, on conditional random fields (CRF) or on
monolingual statistical machine translation (SMT) systems
translating from unpunctuated text to text with punctuation.
One of the advantages of an SMT system or CRF is that more
features beside the language model can be integrated. Fur-
thermore, punctuation prediction can be done before, after
or during the actual translation. Following [1, 2], we use a
phrase-based SMT system for punctuation prediction before
the actual translation as starting point.

In this work, we propose to employ hierarchical trans-
lation in place of phrase-based translation. In phrase-based
translation, the translation units are bilingual phrases which
are pairs formed by a sequence of source language words and
its translation. Since a sequence of words can be translated
at once, local contextual information is preserved. In the
context of punctuation prediction, such information is useful
to predict punctuation marks depending of its surrounding
words, e.g. commas. However, this approach has its limi-
tation for unseen word sequences and dependencies beyond
the local context, e.g. the dependency between a question
word and a question mark. If a sequence of words was not
seen in the training data, the phrase-based translation sys-
tem will fall back on shorter phrases with less local con-
textual information. Thus, more prediction errors can occur.
To generalize better and to model dependencies as described
above, we need a more abstract form of phrases. In hierar-
chical translation, such phrases are defined since discontinu-
ous phrases with “gaps” are allowed. Those phrases capture
long-range dependencies between words. In terms of punc-
tuation prediction, we want to model dependencies between
words and punctuation marks. In addition, by using more ab-
stract phrases, a punctuation prediction system based on hi-
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erarchical translation models is more robust for unseen word
sequences and generalize better.

As already mentioned, another advantage of using an
SMT system for punctuation prediction is that different fea-
tures besides the language model can be applied. These fea-
tures are combined in a log-linear model. In this work, we
investigate the impact of different optimization criteria for
tuning the scaling factors of the features with minimum error
rate training.

In our experiments on the IWSLT 2014
German→English and English→French machine trans-
lation task, we show improvements in terms of F1-Score and
BLEU.

This paper is structured as follows. We start in Section 2
with a short overview of the published research on punctu-
ation prediction. In Section 3, we recap the idea of model-
ing punctuation prediction as machine translation and discuss
different optimization criteria for tuning the scaling factors of
a monolingual MT system. We present our approach using
a hierarchical phrase-based translation system for punctua-
tion prediction in Section 4. Finally, Section 5 describes the
experimental results, followed by a conclusion in Section 6.

2. Related Work
In recent years, several approaches for predicting punctua-
tion have been presented.

The HIDDEN-NGRAM tool from the SRI toolkit [3] con-
siders punctuation marks as hidden events occurring between
words. The most likely hidden tag sequence is found using
an n-gram language model trained on punctuated text. In this
work, we will compare with this tool.

The approach described in [4] is based on conditional
random fields. They extended the linear-chain CRF model
to a factorial CRF model using two layers with different sets
of tags for punctuation marks respectively sentence types.
They compared their approach with linear-chain CRF model
and the HIDDEN-NGRAM tool on the IWSLT 2009 corpus.
Besides the comparison of the translation quality in terms
of BLEU, they also compared the CRF models with the hid-
den event language model regarding precision, recall and F1-
Score. Both in terms of BLEU and in terms of precision,
recall and F1-Score the CRF models outperformed the hid-
den event language model. They claimed that using non-
independent and overlapping features of the discriminative
model as machine translation instead of a language model
only helped. Similar to this approach, using a statistical
machine translation system for punctuation prediction has
the advantage to integrate more features beside the language
model.

Using MT for punctuation prediction was first described
in [5]. In this work, a phrase-based statistical machine
translation system was trained on a pseudo-bilingual cor-
pus. The case-sensitive target language text with punctuation
was considered as the target language and the text without
case information and punctuation was used as source lan-

guage. They applied this approach as postprocessing step
in evaluation campaign of IWSLT 2007 and achieved a sig-
nificant improvement over the baseline. In [6] the same ap-
proach was employed as preprocessing step and compared
with the HIDDEN-NGRAM tool within the evaluation cam-
paign of IWSLT 2008. The HIDDEN-NGRAM tool outper-
formed the MT-based punctuation prediction. In addition to
punctuation prediction using a monolingual MT system, per-
forming segmentation of ASR output was described in [2].
In all mentioned papers using a monolingual MT system for
punctuation prediction, the optimization criterion for tuning
the scaling factors of such a system was not described. In
this work, we will tune both the phrase-based and the hier-
archical translation system against BLEU and Fα -Score and
analyze the impact on the prediction accuracy and translation
quality.

In [7], three different stages at which punctuation can
be predicted are investigated: before, during and after the
translation. Each of the stages requires a different transla-
tion system and has advantages and disadvantages. For pre-
dicting punctuation during the translation, additional punc-
tuation prediction is not needed. The punctuation prediction
before and after the translation was done with the HIDDEN-
NGRAM tool. The implicit punctuation generation worked
best on IWSLT 2006 corpus, but on TC-STAR 2006 corpus
they achieved better results with punctuation prediction be-
fore and after the actual translation.

The impact of using a monolingual statistical machine
translation system rather than the HIDDEN-NGRAM tool was
analyzed in [1]. The authors report an improvement of 0.8
BLEU points by applying a monolingual statistical machine
translation system before translation. An important advan-
tage is that no modification of the actual translation system
is needed. In our work, we follow this pipeline and replace
the phrase-based translation model by a hierarchical transla-
tion model.

3. Modeling Punctuation Prediction as
Machine Translation

Punctuation prediction using a statistical machine transla-
tion system is based on following pipeline. First, we extract
the translation model for the SMT system from a pseudo-
bilingual corpus. In order to create such a corpus, we need
two versions of a monolingual corpus: one without punctua-
tion (source text) and one with punctuation (target text). This
is done by creating a monotone alignment (Figure 1(a)) and
removing punctuation marks from the source sentences. The
punctuation marks in the target sentences which are aligned
with punctuation marks in the source sentences become un-
aligned (Figure 1(b)).

Given the pseudo-bilingual corpus and the modified
alignment, we extract the translation model. In our work, we
substitute the phrase-based translation model by a hierarchi-
cal translation model. Details about hierarchical translation
are given in Section 4. In a next step, the scaling factors of
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Figure 1: Modification of the alignment

the monolingual translation system are tuned. We get a tun-
ing set by removing the punctuation marks from a develop-
ment set and use the original development set as reference.
In this paper, we analyze different criteria used in the opti-
mization of the scaling factors. We give further details in the
following subsection.

3.1. Optimization Criteria

In most state-of-the-art SMT systems, MERT [8] is applied
to optimize scaling factors of features using BLEU [9] as op-
timization criterion. However, the performances of systems
predicting punctuation are measured and compared with the
F1-Score which is the harmonic mean of precision and recall.
Thus, there is an inconsistency between optimization crite-
rion and metric. Furthermore, the F1-Score considers both
precision and recall while BLEU is a metric which is based
on n-gram precision and does not take recall into account. A
criterion including recall is important because it ensures that
the punctuation prediction system generates an appropriate
amount of punctuation marks. In this work, we use Fα -Score
as a more suitable optimization criterion. Fα -Score is a more
general form of the F1-Score, where α is a positive real num-
ber:

Fα = (1+α) · (precision · recall)
α · precision+ recall

By varying the parameter α , more emphasis can be put on
recall or precision. In this work, we will put more weight on
recall and tune the systems with α = {1,2,3,4}. We might
lose precision and overgenerate punctuation marks, but this
could be compensable for the actual translation system.

However, tuning a system on Fα -Score directly would not
be practical as the positions of the punctuation marks would
be ignored. For the optimization, we have to modify the Fα -
Score and take the predecessors of the punctuation marks
into account. In this work, we tune our monolingual trans-
lation systems using the modified Fα -Score as criterion with
α = {1,2,3,4} and compare against systems tuned on BLEU.

4. Punctuation Prediction based on
Hierarchical Translation

In hierarchical phrase-based translation [10], discontinuous
phrases with “gaps” are allowed. The translation model is
formalized as a synchronous context-free grammar (SCFG)
and consists of bilingual rules, which are based on bilingual
standard phrases and discontinuous phrases. Each bilingual
rule rewrites a generic non-terminal X into a pair of strings
f̃ and ẽ with both terminals and non-terminals in both lan-
guages

X → 〈 f̃ , ẽ〉.
Obtaining these rules is based on a heuristic extraction from
automatically word-aligned bilingual training data. Just like
in the phrase-based approach, all bilingual rules of a sen-
tence pair are extracted given an alignment. The standard
phrases are stored as lexical rules in the rule set. In ad-
dition, whenever a phrase contains a sub-phrase, this sub-
phrase is replaced by a generic non-terminal X . With these
hierarchical phrases we can define the hierarchical rules in
the SCFG. The rule probabilities which are in general de-
fined as relative frequencies are computed based on the joint
counts C(X → 〈 f̃ , ẽ〉) of a bilingual rule X → 〈 f̃ , ẽ〉

p( f̃ |ẽ) = C(X → 〈 f̃ , ẽ〉)
∑ f̃ ′ C(X → 〈 f̃ ′, ẽ〉) .

The translation probabilities are computed in source-to-
target as well as in target-to-source direction. In the transla-
tion processes, these probabilities are integrated in the log-
linear combination among other models such as a language
model, word lexicon models, word and phrase penalty and
binary features marking hierarchical phrases, glue rule and
rules with non-terminals at the boundaries.

The translation process of hierarchical phrase-based ap-
proach can be considered as a parsing problem. Given an
input sentence in the source language, this sentence is parsed
using the source language part of the SCFG. Using the as-
sociated target part of the applied rule, a translation can be
constructed. The language model score is incorporated by
employing the cube pruning algorithm presented in [11].

In a standard translation task, hierarchical rules with up
to two non-terminals are extracted. Using rules with one non-
terminal, the translation system is able to model long-range
dependency between terminals. Furthermore, rules with two
non-terminals make it possible to perform reordering without
an additional model. In other words, the reordering is mod-
elled in the hierarchical translation model implicitly. In case
of punctuation prediction, we perform monotone translation
and reordering is not necessary. Thus, we extract rules with
one non-terminal maximum.

For punctuation prediction, our goal is to capture long-
range dependencies between words and punctuation using
hierarchical rules. To be able to extract such rules, we add
an heuristic to the rule extraction process as described in the
next section.
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Figure 2: Extraction heuristic applied for initial phrase
blocks

4.1. Additional Phrase Extraction Heuristic

As mentioned in the Section 3, punctuation marks in the tar-
get sentences which are aligned with punctuation marks in
the source sentences become unaligned. Applying the stan-
dard phrase extraction procedure [12], phrases with punctu-
ation are not extracted (Figure 2(a)). In order to add phrases
such as

〈was machst du da,was machst du da ?〉

to the translation model, we apply a heuristic which allows
for phrase blocks including non-aligned words which are ad-
jacent to phrase boundaries (Figure 2(b)). By using such ad-
ditional phrases as initial phrases in the hierarchical extrac-
tion process (Figure 2(c)), we are able to extract hierarchical
rules which model long-range dependencies between words
and punctuation marks, e.g.

X → 〈was X∼0,was X∼0 ?〉,
X → 〈machst du X∼0,machst du X∼0 ?〉.

In the first rule, the question mark on the target side is re-
lated to the German question word “was”. In the second rule,
the typical German word order for questions (verb “machst”
before subject “du”) triggers a question mark on the target
side. Both rules are more abstract since the gap could be

Table 1: Data statistics for the preprocessed German-
without-punctuation→German parallel in-domain training
corpus used for punctuation prediction with the monolingual
MT systems.

German
without
Punct.

German

Sentences 171721
Running words 2.7M 3.3M
Vocabulary 119242 119266

filled with any other phrases during decoding. Even for un-
seen word sequences, e.g. “was machst du heute”, these
rules match. Thus, punctuation prediction based hierarchical
translation can generalize better and improve the prediction
accuracy.

In the experimental evaluation, we will analyze if such
rules influence the decoding process and affect the punctua-
tion prediction accuracy. Note, for the phrase-based transla-
tion system, we apply the non-aligned word heuristic as well.

5. Experimental Evaluation
Our approach to use hierarchical phrase-based translation for
punctuation prediction was evaluated on the IWSLT 2014
German→English and English→French machine translation
tasks. IWSLT is an annual public evaluation campaign focus-
ing on spoken language translation. The domain is lecture-
type talks presented at TED conferences. The translation
part of the evaluation campaign is divided into two differ-
ent tracks: translation of automatic and translation of manual
transcriptions. While the correct manual transcription con-
tains punctuation marks, the automatic transcription did not.
As we focus on punctuation prediction in this work, we used
for the experiments pseudo ASR output rather than real ASR
output as input. Pseudo ASR output is created by remov-
ing punctuation marks from the manual transcriptions. Thus,
recognition errors do not occur and case information is pre-
served.

5.1. Punctuation Prediction

Both phrase-based and hierarchical translation models are
trained on the provided in-domain training data (Table 1).

For tuning and testing our monolingual translation sys-
tem, we used the provided manual transcribed development
set and test sets (Table 2).

Training data as well as development and test set were
modified as described in Section 3. A 5-gram language
model, which was applied by both monolingual translation
systems and the HIDDEN-NGRAM toolkit, was trained on the
concatenation of the in-domain, europarl, news-commentary
and commoncrawl corpora with the KenLM language model
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Table 2: Data statistics for the preprocessed German-
without-punctuation→German development and test sets for
tuning and testing the punctuation prediction systems.

German
without
Punct.

German

dev Sentences 887
Running words 16521 19152
Vocabulary 4029 4039

test Sentences 1565
Running words 25483 30332
Vocabulary 4976 4987

toolkit [13] using modified Kneser-Ney smoothing [14].
For creating the monolingual translation systems, we used
an open-source translation tookit, which implements both
phrase-based and hierarchical translation.

5.2. Bilingual Translation Systems

We set up translation systems for German→English and
English→French to investigate the impact of better punctu-
ation prediction on the translation quality in terms of BLEU
and TER [15]. In order to analyze the effect of prediction
errors on the translation quality, we compare with a setup
with correct punctuation in the input. We employed phrase-
based translation for both language pairs. Both systems were
trained on all available bilingual and monolingual data pro-
vided by the IWSLT evaluation campaign.

5.3. Comparison of the Prediction Accuracy

The punctuation performance of our new approach using
a hierarchical translation system (HPBT) is compared with
a phrase-based translation system (PBT) and the HIDDEN-
NGRAM tool. The accuracy is measured in precision (Prec.),
recall (Rec.) and F1-Score (F1). Furthermore, we analyze
the impact of different optimization criteria. Both translation
systems were tuned on BLEU and Fα , where α = {1,2,3,4}.
Table 3 shows the result of this comparison for the German
language.

The HPBT translation system tuned on F2 performs best
in terms of F1-Score. For the PBT translation systems, tuning
on F2 leads to slightly better results. The performance of the
HIDDEN-NGRAM toolkit is slightly better than the best PBT
system. However, HIDDEN-NGRAM performs worse than the
HPBT system tuned on F2. In general, it seems tuning on Fα
works better than tuning on BLEU. Although systems tuned
on Fα tend to be less precise, the F1-Score is higher compare
to system tuned on BLEU. Best performance is achieved with
α = 2.

In the following, we define the PBT system tuned on
BLEU as baseline and compare it against PBT tuned on F2,

Table 3: Accuracy of the predicted punctuation on the test
set of correct manual transcription without punctuation (Ger-
man).

system tuned on Prec. Rec. F1

PBT w/o heuristic BLEU 86.7 24.4 43.9
PBT BLEU 82.7 67.5 74.3

F1 82.6 67.5 74.3
F2 78.3 71.4 74.7
F3 76.6 72.2 74.4
F4 72.5 73.6 73.0

HPBT BLEU 86.4 65.5 74.7
F1 81.8 71.0 76.0
F2 77.0 75.4 76.2
F3 75.9 75.2 75.6
F4 71.8 73.7 74.2

HIDDEN-NGRAM - 82.7 69.5 75.5

Table 4: Three different classes of punctuation marks and
their relative frequencies in the test set of the correct manual
transcription.

Class Punctuation marks rel. freq.
1 . ? ! 40,2%
2 , 53,3%
3 " ’ ; ) ( 6,5%

HPBT tuned on F2 and HIDDEN-NGRAM.
To get further insight, on which level type of annotation

the prediction methods are more or less accurate, we measure
the accuracy regarding three different classes of punctuation
marks (Table 4).

The result of this comparison is given in Table 5. In all
three classes, HPBT outperforms both HIDDEN-NGRAM and
PBT in terms of F1-Score. However, the largest difference in
accuracy is obtained in class 3.

Next, we investigate the usage of hierarchical rules in the
decoding process and analyze whether such rules help to in-
crease the prediction accuracy. This is done by counting the
lexical and hierarchical rules applied during decoding. In
particular, we count rules which introduce punctuation marks
and compute the average target length of the applied rules. In
this analysis, we compare PBT and HPBT (Table 6). While the
PBT system uses short phrases with a limited local context
(average target phrase length of 2.1 or 2.0), the HPBT system
employs both lexical and hierarchical rules to insert punctu-
ation marks. Even if only 20% of the rules which introduce
punctuation marks are hierarchical, it seems that those rules
help to improve the prediction accuracy.

We further examine these results using a prediction ex-
ample (Table 7). In this example, both HIDDEN-NGRAM and
PBT did not predict the question mark. However, HPBT is
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Table 5: Accuracy of the predicted punctuation on the test of correct manual transcription without punctuation regarding three
different classes of punctuation marks (German).

class 1 class 2 class 3
system tuned on Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1

PBT BLEU 88.4 73.9 80.5 84.8 75.9 80.1 56.7 21.3 30.9
PBT F2 88.7 73.8 80.5 78.5 83.5 80.9 58.8 27.1 37.1
HPBT F2 88.4 81.6 84.9 77.7 85.2 81.3 49.5 30.8 38.0
HIDDEN-NGRAM - 87.8 81.6 84.6 84.8 75.1 79.7 39.9 12.6 19.1

Table 6: Comparison of the numbers of applied phrases in-
troducing punctuation marks. Average target phrase length is
given in parentheses.

system tuned on lexical rules hierarchical rules
PBT BLEU 2313 (2.1) -
PBT F2 2549 (2.0) -
HPBT F2 2234 (2.6) 442 (3.9)

Table 7: Examples for punctuation prediction on German
pseudo ASR output using different prediction approaches.

system tuned on
pseudo ASR output was machst du nur

PBT BLEU was machst du nur .
PBT F2 was machst du nur .
HPBT F2 was machst du nur ?
HIDDEN-NGRAM - was machst du nur .

correct punctuation was machst du nur ?

able to produce the correct sentence end punctuation.
In this example, the word order “machst du” indicates

that this sentence is a question. Using the HPBT system, the
correct sentence end mark is introduced by applying follow-
ing hierarchical rule:

X → 〈machst du X∼0,machst du X∼0 ?〉.

In this rule, a long-range dependency between the words
“machst du” and the punctuation mark “?” exists. However,
such a dependency is not modelled in the phrase-based trans-
lation system. The question mark can only be inserted by the
phrase

〈nur,nur ?〉.

A phrase with local contextual information about the word
order, e.g.

〈machst du nur,machst du nur ?〉,

was not seen in the extraction process and is not part of this
translation model. Thus, the PBT system uses shorter phrases
with less contextual information and it is more likely that a
phrase producing an erroneous punctuation is used. Here, the
following phrase was applied:

〈nur,nur .〉.

In this example, it seems that the hierarchical system gen-
eralize better for unseen word sequences. Furthermore, the
analysis shows that hierarchical rules influence the decoding
process and help to improve the prediction accuracy in our
experiments.

5.4. Comparison of the Translation Quality

In the introduction, we have mentioned the effect of punctua-
tion errors on the translation quality. In the next experiments,
we check whether a higher prediction accuracy results in an
improvement of the translation quality in terms of BLEU and
TER. We performed punctuation prediction with different
setups and then translated the enriched pseudo ASR output.
The translation was performed with the bilingual SMT sys-
tems described above. The result of this comparison is shown
in Table 8. We lose up to 2.2 points in BLEU if punctuation
marks need to be predicted. It seems that a higher prediction
accuracy leads to a higher translation quality. The perfor-
mance of HIDDEN-NGRAM and PBT tuned on BLEU is on
the same level. By replacing the optimization criterion with
F2, we gain 0.2 points in BLEU. Using a hierarchical system
improves the translation quality by additional 0.2 points in
BLEU. TER is on the same level for all setups.

To verify our improvements, we carried out additional
experiments on the English→French translation task (Ta-
ble 9). In this setup, we performed punctuation prediction
both on pseudo ASR output and real ASR output. In terms of
F1-Score, HPBT outperforms both HIDDEN-NGRAM and PBT.
However, on the real ASR output test set the performance of
HPBT and PBT is on a same level in terms of translation qual-
ity.
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Table 8: Impact of accuracy of punctuation prediction on the translation quality (German→English). Comparison with correct
punctuation in the input.

system tuned on Prec. Rec. F1 BLEU TER

PBT BLEU 82.7 67.5 74.3 27.3 53.3
PBT F2 78.3 71.4 74.7 27.5 53.4
HPBT F2 77.0 75.4 76.2 27.7 53.2
HIDDEN-NGRAM - 82.7 69.5 75.5 27.2 53.2

correct punctuation 29.4 51.3

Table 9: Accuracy of the predicted punctuation on the test set of automatic (ASR) and correct manual transcription without
punctuation (pseudo ASR) (English→French).

pseudo ASR ASR
system tuned on Prec. Rec. F1 BLEU TER BLEU TER

PBT BLEU 81.2 67.6 73.7 28.4 54.5 22.6 62.8
PBT F2 72.2 75.0 73.6 28.6 55.2 22.8 63.2
HPBT F2 74.8 77.1 75.9 28.9 54.7 22.7 62.7
HIDDEN-NGRAM - 82.0 60.2 69.4 27.0 55.4 21.7 62.6

correct punctuation 31.9 50.1 - -

6. Conclusion
In this paper, we introduced a new approach to predict punc-
tuation with a monolingual hierarchical translation system.
While phrase-based translation is limited to local context in-
formation, we are able to model long-range dependencies
between words and punctuation marks by using hierarchical
translation. In our experimental evaluation, we showed that
our method improves the prediction accuracy and translation
quality in terms of BLEU on the IWSLT German→English
and English→French translation tasks. Furthermore, tuning
a monolingual translation system for predicting punctuation
on F2 rather than BLEU improves the accuracy and transla-
tion quality.

In future work, we would like go to beyond the phrase
level and investigate features which are operating on sen-
tence level. In this way, quotes or parentheses could be mod-
elled more accurate.
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Abstract

We propose a novel data-driven rule-based preordering ap-
proach, which uses the tree information of multiple syntactic
levels. This approach extend the tree-based reordering from
one level into multiple levels, which has the capability to pro-
cess more complicated reordering cases. We have conducted
experiments in English-to-Chinese and Chinese-to-English
translation directions. Our results show that the approach
has led to improved translation quality both when it was ap-
plied separately or when it was combined with some other
reordering approaches. As our reordering approach was used
alone, it showed an improvement of 1.61 in BLEU score in
the English-to-Chinese translation direction and an improve-
ment of 2.16 in BLEU score in the Chinese-to-English trans-
lation direction, in comparison with the baseline, which used
no word reordering. As our preordering approach were com-
bined with the short rule [1], long rule [2] and tree rule [3]
based preordering approaches, it showed further improve-
ments of up to 0.43 in BLEU score in the English-to-Chinese
translation direction and further improvements of up to 0.3
in BLEU score in the Chinese-to-English translation direc-
tion. Through the translations that used our preordering ap-
proach, we have also found many translation examples with
improved syntactic structures.

1. Introduction
Word order is a general issue when we want to translate text
from one language to another. Different languages normally
have different word orders and the difference could be very
huge. Among all the languages, Chinese is one language
which is very different from English, because they belong
to different language families and have long period of sep-
arately development. Both languages have a Subject-Verb-
Object order, but they also have a lot of differences in word
order. Especially sentences in both languages can some-
times have completely different syntactic structures. The dif-
ferences may involve long-distance or unstructured position
changes.

The decoder in phrase-based SMT systems is guided by
language model, phrase table and reordering models, which
makes word reordering possible. However, it may have some

disadvantages, such as it can’t handle long-distance reorder-
ing or unstructured reordering properly, or it may be rather
time-consuming.

Encouraged by the results from the result from Rottmann
and Vogel 2007 [1], Niehues and Kolss 2009 [2] and Herr-
mann et al. 2013 [3], we further propose a new data-driven,
rule-based preordering method, which extracts and applies
reordering rules based on syntax tree. The method is called
Multi-Level-Tree (MLT) reordering, which orders the con-
stituents on multiple levels of the syntax tree all together.
This preordering method rearranges the words in source lan-
guage into a similar order as they are supposed to be in the
target language before translation. With the proper word or-
der, better translation quality can be achieved. Especially,
our preordering method is very suitable for translation be-
tween language pairs like English and Chinese, which have
very different word orders. Besides, the method can also be
combined with the above mentioned rule-based reordering
methods to achieve better translation quality.

The rest of this paper is organized as follows. Section 2
presents a review of related work. In Section 3, we point out
the problems for translation between English and Chinese
and describe the motivation of MLT reordering. In Section 4,
we introduce the details of the MLT reordering. In Section 5,
we present the experimental results and evaluation. Finally,
we conclude this paper in Section 6.

2. Related Work

Word reordering is an important problem for statistical ma-
chine translation, which has long been addressed.

In a phrase-based SMT system, there are several possi-
bilities to change the word orders. Words can be reordered
during the decoding phase by setting a window, which allows
the decoder to choose the next word for translation. Reorder-
ing could also be influenced by the language model, because
the language model gives probability of how a certain word is
likely to follow. Different language model may give different
probability, which further influences the decision made by
log-linear model. Other ways to change the word orders in-
clude using distance based reordering models or lexicalized
reordering models [4, 5]. The lexicalized reordering model

279

Proceedings of the 11th International Workshop on Spoken Language Translation
Lake Tahoe, December 4th and 5th, 2014



reorders the phrases by using information of how the neigh-
boring phrases change orientations.

Another way to achieve word reordering is to detach it
from decoding phase and do it separately in a pre-process
before decoding, in order to reduce the time for translation.
This kind of preordering approaches use linguistic informa-
tion to modify the word orders. Preordering can also be rule-
based, which extracts different types of reordering rules by
observing reordering patterns from the training data and ap-
ply the rules to the sentences to be translated. Depends on
how the rules are defined, different information may be used
such as word alignments, POS tags, syntax trees, etc.

Some early approaches use manually defined reordering
rules based on the linguistic information for particular lan-
guages [6, 7, 8, 9]. Later come the data-driven methods
[10, 11], which learn the reordering rules automatically.

Rottmann and Vogel 2007 [1] introduced the idea of ex-
tracting reordering rules from the POS tag sequences of train-
ing data and use them for reordering. Niehues and Kolss
2009 [2] went further, and developed a method for long-
distance word reordering, which works good on German-
English translation task due to the long-distance shift of
verbs. The method extracts discontinuous reordering rules
in addition to the continuous ones, which uses a placeholder
to match several words and enables the word to shift cross
long distance.

Afterwards, Herrmann et al. 2013 [3] introduced a new
approach to reorder the words based on syntax tree, which
led to further improvements on translation quality. The al-
gorithm takes the syntactic structure of the source sentence
into account and extract the rules from the syntax tree by
detecting the reordering of child sequences. It is also pos-
sible to compute reorderings only based on part of the child
sequences, which is suitable for language with flat syntactic
structures such as German [12].

However, these approaches which are based on POS tag
sequences or syntax trees may not fully explore the syntac-
tic aspect of Chinese. As Chinese has very different word
orders, a reordering approach, which can further explore the
hierarchical structure of Chinese and utilize this information
for reordering, may further improve the translation quality.

The hierarchical phrase-based translation model [13] is
especially suitable for translation into Chinese, and delivers
very good translation results. It extracts hierarchical rules by
using information of the syntactic structure. Phrases from
different hierarchies, or so-called phrases of phrases, are re-
ordered during the decoding.

The idea of phrases on different hierarchies has inspired
us to create this preordering method based on multiple lev-
els of the syntax tree. Besides, we also hope to detach the
reordering from decoding phase and do it separately in a pre-
process before decoding, in order to reduce the time for trans-
lation. This kind of preordering approaches use linguistic
information to modify the word orders.

Oracle reordering has also shown values for evaluating

Those are conveyor belts that go around .

那些 是 在 运转 的 传送带 。

Figure 1: Position change of a relative clause

the potential of preordering. [14] introduced the permutation
distance metrics which can be used to measure reordering
quality. And [15] described how we can construct permuta-
tions from the word alignment as oracle reordering.

In this paper, we compare our results to the aforemen-
tioned rule-based reordering methods and the oracle reorder-
ing to get a better overview.

3. Motivation
The word order between English and Chinese differs very
much. For one, the words in Chinese have generally differ-
ent origins as those in English, which leads to very differ-
ent vocabulary and word construction. Sometimes it is very
hard to find corresponding words in the other language. For
example, some prepositions in Chinese have very different
usage than the corresponding prepositions in English. Also
the continuous writing of Chinese without spaces makes this
problem more severe, since word boundaries are not always
so clear in Chinese. The text needs to be segmented first
before translation. A word segmentation process is used to
separate the words, but the results may not always be ideal.

For the other, both languages have sometimes very dif-
ferent sentence structures. Thus, a word-for-word translation
between English and Chinese is often unnatural or difficult
to understand. Each of them has some sentence patterns that
do not exist or rarely used in the other. In Chinese, a mod-
ifier is often put before the part that it modifies. While in
English, it is very common that the modifier is put after the
part that it modifies. Besides, English sentences with a lot
of long clauses may be more suitable to translate into several
Chinese sentences, because in Chinese people do not tend to
use long clauses in general.

Some typical problems of word orders between English
and Chinese that we have found are as follows:

• Pre-modifier instead of post-modifier
In Chinese people tend to use pre-modifier rather than
post-modifier. This involves the position change of ad-
verbials, relative clauses and preposition phrases dur-
ing translation. Figure 1 shows an example of how the
position of a relative clause changes

• Construction of questions
The two languages have very different ways to con-
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How will you cook your chicken now ?

现在 你 会 怎么 做 鸡肉 呢 ?

Figure 2: Word reordering of a question

struct questions, which raises word order problems for
translating questions. Figure 2 shows word reordering
of a question.

• Special sentence constructions
For example, Bâ-construction (把字句) in Chinese and
sentence constructions such as there-be and inverted
negative sentences in English do not have correspon-
dence in the other language in general.

• Long distance word position change
Word reordering between English and Chinese often
involves word shift cross long distance. For exam-
ple, following translation shows that a adverbial clause
(underlined) is shifted cross long distance when being
translated.

I find this very much disturbing when we are
talking about what is going on right and wrong
with democracy these days.

现在，每当我跟别人讨论我们的民主什么是
对的，什么是错的我都为此觉得很无力。

Following the analysis above, we can see the word re-
ordering between English and Chinese is very unstructural,
because it involves word position changes between different
word groups and syntactic hierarchies in the source language.
In order to improve the reordering, we need methods that can
handle more complicated, unstructural word order change.
Inspired by the ideas of reordering on syntax tree and hier-
archical phrases, we created the Multiple-Level-Tree(MLT)
reordering, which reorders words based on multiple syntac-
tic levels and can handle long distance word position change
and complicated word position change very well.

4. Multi-Level-Tree Reordering
Our preordering method is based on automatically learned re-
ordering rules. Reordering rules show how sentences should
be reordered in source language before translation. In our
system, the rules are generated by using the word alignment,
and syntax tree, all of which are calculated based on the train-
ing data. After reordering rules are applied to the source sen-
tences, word lattices are generated. A word lattice contains
all the reordering possibilities of a source sentence and is fur-
ther passed to the decoder for translation. The preordering
system is illustrated as Figure 3.

4.1. Reordering on Multiple Syntactic Levels

Reordering patterns are based on multiple levels of the syn-
tax tree. Figure 4 illustrates how the reordering patterns are
detected from the syntax tree. In the example, the detec-
tion starts from the root node, go downwards three levels and
use the nodes in these levels to detect the reordering pattern.
These nodes that are used for detecting the reordering pattern
are colored gray and have an italic font. The nodes with dark
gray are the lowest ones among such nodes, which represent
constituents that are actually reordered through the reorder-
ing rules. The leaf nodes in the syntax tree indicate words in
the sentence, which has rectangle shape with angular corners.

According to the alignment information with the corre-
sponding Chinese translation, the node labeled with NP is
moved forward to the first place in the translation and the
node labeled with IN-of is moved forward to the second place
in translation. This reordering cannot be handled with one-
level tree-based reordering, but in MLT, from the root node
with a search depth of three, the following reordering pattern
can be found:

NP(CD0 NP(NP(JJ1 NNS2)PP(IN3 NP4)))

-> NP IN CD JJ NNS
-> 4 3 0 1 2 (alternative with index)

The POS tags in bold corresponds to nodes with dark
gray in Figure 4, which presents constituents that are actually
reordered. The parentheses in the reordering pattern indicate
the corresponding hierarchies in the syntax tree. The reorder-
ing can be alternatively represented with indices, which is the
actual internal representation to avoid ambiguity caused by
POS tags with the same name and we use this representation
throughout this paper.

4.2. Rule Extraction

In order to find as much information for reordering as pos-
sible, the algorithm of rule extraction detects the reordering
patterns from all nodes in the syntax tree and it goes down-
wards for any number of hierarchies, until it reaches the low-
est hierarchy in the subtrees.

In the implementation, the program conducts a depth-
first search (DFS) to traverse every node in a syntax tree.
Every time when a node is reached, the program conducts
another iterative deepening depth-first search (IDDFS) in its
subtree with depth-limit from 1 to the subtree’s depth. And
the program detects if there are any patterns of word position
changes at the same time, by using the alignment for com-
parison.

The detected word position changes are checked for their
validity for reordering rules. A valid reordering pattern
should both have actual word reordering and clearly distin-
guishable new order on the side of the target language, i.e.
no collision of aligned ranges on the target side.
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Figure 3: Illustration of preordering system
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big

NNS
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IN
of NP

JJ
peaceful

NN
reunification

和平 统一 的 十 大 好处

Figure 4: Detection of reordering pattern from multiple syn-
tactic levels

Figure 5 shows a phrase to be translated, together with
its syntax tree and word alignment of parallel text. In this
example, we can find the following reordering patterns:

From node 1:
NP(NP PP)->1 0 [1 level]
NP(NP(JJ NNS)PP(IN NP))->3 2 0 1 [2 levels]
NP(NP(JJ NNS)PP(IN NP(JJ NNS)))->
3 4 2 0 1 [3 levels]

From node 3:
PP(IN NP)->1 0 [1 level]

NP 1

NP 2

JJ
physiological

4

NNS
effects

5

PP 3

IN
of 6 NP 7

JJ
environmental

8

NNS
hormones

9

环境 荷尔蒙 的 生理 效应

Figure 5: A phrase with its syntax tree and word alignment
for rule extraction

PP(IN NP(JJ NNS))->1 2 0 [2 levels]

The probability of the reordering patterns are calculated
based on frequency of their occurrences in the training cor-
pus. There are the left part and the right part of the reorder-
ing patterns separated by the arrow. The left part indicates
the syntactic tags that should be reordered and the right part
indicates how the new order should be like. The probability
of the pattern is calculated by how often the left part is re-
ordered into the right part among all its appearances in the
training corpus. In addition, reordering patterns that appear
less than a threshold are ignored to be used as reordering
rules, in order to prevent too concrete rules without general-
ization capability and overfitting.
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4.3. Rule Application

The syntax tree is traversed by DFS as the same in rule ex-
traction. But from the root of each subtree, it has scanned
with depth limit from its maximal levels, i.e. its depth, to
1. As it turns out that any rule can be applied for a subtree
at some level, a new path for this reordering will be added to
the word lattice for decoding. As long as rules can be applied
on a subtree for a certain depth, the search for rule applica-
tion on this subtree stops, and the search on the next subtree
continues.

The reason for this is to prevent duplicate reorderings due
to application of nested rules, which have overlapped effect
with each other. These rules are normally patterns that are
generated on the same subtree, but with different number of
levels, which has different generalization effect on the same
range of words in the text. For example, the following pat-
terns can be detected from the syntax tree in Figure 5:

PP(IN NP) -> 1 0
PP(IN NP(JJ NNS)) -> 1 2 0

Both patterns are detected from the same node, but the
second pattern is detected by retrieving the nodes one level
deeper and it is more concrete. So the first pattern can be seen
as a generalization of the second pattern. Whenever a rule of
the second pattern can be applied, a rule of the first pattern
can be applied too. Because subtrees are checked from the
highest number of levels in rule application, the more con-
crete rule is applied first. Since the more concrete rule fits
the detected pattern better and contains more details of re-
ordering, so it may be more suitable for rule application. In
this example, the second rule is applied rather than the first
rule.

Word reorderings are added to the word lattice as paths,
which is further past to the decoder for translation. Paths
with very low probability are removed, in order to save space
for storing the lattice and reduce decoding time later, without
compromising too much translation quality.

4.4. Rule Combination

In order to further explore the probability of improvement,
the MLT reordering rules can be combined with other types
of reordering rules to achieve further improvements. This is
done by training the different types of rules separately and
applying them on the monotone path of the sentence inde-
pendently. All the generated different paths are compressed
in the word lattice.

5. Experiments
We have conducted experiments on both English-to-Chinese
and Chinese-to-English translation directions to get a better
overview of the MLT reordering’s effect. In the experiments,
the MLT reordering rules are also combined with other re-
ordering rules that are introduced before, in order to show

BLEU (%) Imprv. TER (%)
Baseline 12.07 72.15
+Short Rules 12.50 0.43 71.41
+Long Rules 12.99 0.92 70.71
+Tree Rules 13.38 1.31 68.27
+MLT Rules 13.81 1.74 68.20
Oracle Reordering 18.58 6.51 62.13
Long Rules 12.31 0.24 71.81
Tree Rules 13.30 1.23 70.42
MLT Rules 13.68 1.61 70.25

Table 2: Result overview of the English-to-Chinese system

the improvement achieved by our approach.
In order to evaluate the potential of word reordering, we

also used oracle reordering in the experiments. Oracle re-
ordering is considered to be an optimally reordered sentence
as input to the SMT system and do not allow additional re-
ordering during decoding [12]. So we can use it as input
of the SMT system and the scores are the optimal results that
can be achieved by word reordering, from which we can eval-
uate the potential of reordering methods.

5.1. English-to-Chinese System

We performed experiments with and without different re-
ordering methods covering the English-to-Chinese transla-
tion direction. The reordering methods included our MLT re-
ordering approach and the other reordering approaches with
short rules, long rules and tree rules. The system was trained
on news text from the LDC corpus and subtitles from TED
talks. The development data and test data were both news
text from the LDC corpus. The system was a phrase-based
SMT system, which used a 6-gram language model with
Knersey-Ney smoothing. Besides the preordering, no lexical
reordering or other reordering method in decoding phase was
used. The text was translated through a monotone decoder.

The reordering rules were extracted by using the word
alignments, POS tags and syntax trees from the training data.
One reference of the test data was used for evaluating the
results. The threshold for rule extraction is set as 5 times
and reordering paths with probability less than 0.1 are not
added to word lattices. The decoder was a monotone decoder.
Table 1 shows the size of data used in the system.

Table 2 shows the BLEU scores, absolute improvements
of BLEU scores and TER scores for configurations with dif-
ferent reordering methods. The table consists of 2 sections.
the first row of the top section shows results of the baseline,
which used no preordering at all. In the following rows of
the top section, different types of reordering rules are com-
bined gradually, with each type per row. For example, the
row with +MLT Rules presents the configuration with all the
rule types including MLT rules and all the other rules in the
rows above. All improvements are absolute improvements
of BLEU scores in comparison to the baseline. Each row
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Data Set Sentence Count Word Count Size (Byte)
English Chinese English Chinese

Training Data LDC 303K 10.96M 8.56M 60.88M 47.27M
TED 151K 2.58M 2.86M 14.24M 15.63K

Development Data 919 30K 25K 164K 142K
Test Data 1663 47K 38K 263K 220K

Table 1: Corpus statistics in the English-to-Chinese system

BLEU (%) Imprv. TER (%)
Baseline 21.80 62.09
+Short Rules 22.90 1.10 61.64
+Long Rules 23.13 1.33 61.43
+Tree Rules 23.84 2.04 60.95
+MLT Rules 24.14 2.34 60.79
Oracle Reordering 26.80 5.00 56.97
Long Rules 22.10 0.30 62.21
Tree Rules 23.35 1.55 61.52
MLT Rules 23.96 2.16 60.83

Table 4: Result overview of the Chinese-to-English systems

with a certain reordering type presents all the different vari-
ations of this type and the best score under these configura-
tions is shown. For example, long rules include the left rules
and right rules, and the tree rules include the partial rules
and recursive application. The baseline used a monotone de-
coder and no preordering. The row with oracle reordering
shows the results from the configuration that used the oracle
reordering as input. The results of oracle reordering can be
used for analyzing the potential of source sentence reorder-
ing. In the lower section of the table, different rule types are
not combined and the effect of each rule type is shown.

5.2. Chinese-to-English System

The experiments for Chinese-to-English systems have a sim-
ilar setup as described in the last section. The parallel data
used in the English-to-Chinese system was also used in this
experiment by switching the source language and the target
language. We only used the LDC data set for training, and no
TED data were used in this system. The test data had three
English references for evaluating the results instead of one
as in the previous system. The data used are summarized in
Table 3.

Table 4 shows the results for configurations with differ-
ent reordering methods for the Chinese-to-English transla-
tion. The table can be interpreted in the same manner as
Table 2 in the previous section.

5.3. Evaluation

The results shows increasing scores when we used reorder-
ing methods from short rules, long rules, tree rules to MLT
rules. And better BLEU scores were achieved when we com-

bined the different reordering rules. The MLT rules achieved
better BLEU scores and TER scores in both translation di-
rections, not only when it was used alone, but also it was
added to the other reordering rules. As the MLT reordering
rules were used alone, it showed an improvement of 1.61 in
BLEU score in the English-to-Chinese translation direction
and an improvement of 2.16 in BLEU score in the Chinese-
to-English translation direction, in comparison with the base-
line, which used no reordering at all. As the MLT reordering
rules were combined with the other existing reordering rules,
a further improvement of 0.43 in BLEU score (from 13.38 to
13.81) was shown in the English-to-Chinese translation di-
rection, as well as a further improvement of 0.3 in BLEU
score (from 23.84 to 24.14) in the Chinese-to-English trans-
lation direction.

We have also found improvements in the sentence struc-
ture. Table 5 and Table 6 show some translation examples
in both translation directions. Sections are separated by dou-
ble lines in the table. Each section of this table shows one
translation example with the source sentence (source), trans-
lation without using MLT reordering (no MLT), translation
with MLT reordering (MLT) and the reference (reference).
Glossary for the source sentences or references in Chinese is
also added as word for word translation. Each word or group
of hyphenated words in the glossary corresponds a Chinese
character or a group of Chinese characters that are not sepa-
rated with space. A placeholder � is used to replace words
that are difficult to translate, which play grammatical roles
in general. The translation without using MLT reordering
comes from the configuration with highest BLEU score that
did not use MLT reordering. And the translation with MLT
reordering comes from the configuration with highest BLEU
score that used MLT reordering. From the examples, we can
clearly see the improvements in sentence structure.

From these experiments we can draw the conclusion
that our reordering method obviously improves the sen-
tence structure and translation quality in both English-to-
Chinese and Chinese-to-English translation directions, no
matter when we apply it alone or when we combine it with
short rules, long rules and tree rules.

6. Conclusions

We have presented a new preordering approach for transla-
tion between English and Chinese. The algorithm detects
and applies reordering rules by using information of multi-
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Data Set Sentence Count Word Count Size (Byte)
Chinese English Chinese English

Training Data 303K 8.56M 10.96M 47.27M 60.88M
Development Data 919 25K 30K 142K 164K
Test Data 1663 38K 47K 220K 263K

Table 3: Corpus statistics in the Chinese-to-English system

Source 陈至立说 ,古巴是拉美和加勒比地区 有重要影响的国家。

Glossary chen-zhili said , cuba is latin-american and caribbean region has great influence � country
.

No MLT
chen zhili said : cuba is the latin america and the caribbean region has an important influ-
ence on the state .

MLT chen zhili said : cuba is a country of important influence latin america and the caribbean
region .

Reference
chen zhili said that cuba is a country of great influence in the latin american and caribbean
region .

Source 近年来 ,两国教育交流日益密切 ,人员来往频繁。

Glossary
recent-years in, two countries educational exchange increasingly close , personnel visits
frequent .

no MLT in recent years , the two countries education have been increasingly close exchanges and
personnel contacts have been frequent .

MLT
in recent years , the educational exchanges between the two countries have become in-
creasingly frequent , and have had frequent contacts .

Reference
in recent years , the educational exchange between the two countries has become increas-
ingly close with frequent personnel visits .

Table 5: Examples of translations from Chinese to English

Source hu jintao also extended deep condolences on the death of the chinese victims and expressed
sincere sympathy to the bereaved families .

No MLT
胡锦涛还表示 深切哀悼的受害者家属的死亡 ,向迂难者家属表示 诚挚的慰
问。

MLT 胡锦涛还对中国迂难者表示 哀悼 ,向迂难者家属表示 诚挚的慰问。

Reference 胡锦涛还对中方不幸遇难人员表示 深切的哀悼 ,并向遇难者的亲属致以诚
挚的慰问。

Glossary
hu-jintao also on chinese unfortunately killed people extended deep � condolences , and
to bereaved ’s families expressed sincere � sympathy .

Source
satisfying personal interests and expanding knowledge are also major reasons why hourly
work appeals to people .

No MLT 满足个人利益和扩大知识也是主要原因小时工作吸引人。

MLT 满足个人利益和扩大知识也是为什么学生工作吸引人的主要原因。

Reference 满足个人兴趣 ,扩大自己的知识面也是兼职小时工受青睐的一个重要原因
。

Glossary
satisfying personal interests , expanding own � knowledge also are part-time hourly work
is favored � one � major reason .

Source the dalai lama will go to visit washington this month .
No MLT 达赖喇嘛将访问华盛顿的这一个月。

MLT 达赖喇嘛将本月访问华盛顿。

Reference 达赖喇嘛将在本月前往华盛顿访问。

Glossary dalai lama will in this month go-to washington visit .

Table 6: Examples of translations from English to Chinese
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ple syntactic levels in the syntax tree and word alignment
to reorder the source sentences. Reordering patterns are de-
tected by checking if the nested tag sequences in subtrees
with any number of search levels have clearly new orders in
the aligned text in the target language.

We have conducted experiments in both translation direc-
tions between English and Chinese with different SMT con-
figurations. From the results we can see the BLEU scores
were improved no matter when we applied the SMT reorder-
ing method to the baseline directly or when we combined it
with the other reordering methods, i.e. short rules, long rules
and tree rules based reordering methods.

Besides the improvement in BLEU scores, our preorder-
ing approach also showed improvement in the sentence struc-
ture of the translation. Considering sentences that have com-
plicated structure only make up a small part of the data, even
a small improvement in the result can mean a big improve-
ment in translating these complicated sentences.

By taking a close look at the gap between the scores of
oracle reordering and the best scores achieved by MLT re-
ordering, we can also see, there is still potential for improve-
ments of translation between English and Chinese through
better reordering methods.

7. Acknowledgments
The authors gratefully acknowledge the support by an
interACT student exchange scholarship. The research lead-
ing to these results has received funding from the European
Union 7th Framework Programme (FP7/2007-2013) under
grant agreement No. 287658.

8. References
[1] Rottmann, K. and Vogel, S., “Word Reordering in Sta-

tistical Machine Translation with a POS-Based Distor-
tion Model,” in TMI, (Skövde, Sweden), 2007.

[2] Niehues, J. and Kolss, M., “A POS-Based Model for
Long-Range Reorderings in SMT,” in Proceedings of
the Fourth Workshop on Statistical Machine Transla-
tion, (Athens, Greece), pp. 206–214, Association for
Computational Linguistics, 2009.

[3] Herrmann, T., Weiner, J., Niehues, J., and Waibel, A.,
“Analyzing the Potential of Source Sentence Reorder-
ing in Statistical Machine Translation,” in IWSLT, (Hei-
delberg, Germany), 2013.

[4] Tillmann, C., “A Unigram Orientation Model for Sta-
tistical Machine Translation,” in Proceedings of HLT-
NAACL 2004: Short Papers, pp. 101–104, Association
for Computational Linguistics, 2004.

[5] Koehn, P., Axelrod, A., Birch, A., Callison-Burch, C.,
Osborne, M., Talbot, D., and White, M., “Edinburgh
System Description for the 2005 IWSLT Speech Trans-
lation Evaluation,” in IWSLT, pp. 68–75, 2005.

[6] Collins, M., Koehn, P., and Kučerová, I., “Clause Re-
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