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Introduction

Domain adaptation in MT
or how to avoid the dilution

Large 
out-of-domain

corpus

SMT system
out-of domain

Data weighting or adaptation

See (Foster and Kuhn2007; Bertoldi and Federico2009; Axelrod et al.2011;
Sennrich2012; Chen et al.2013)

Require to retrain entirely all the models

Very time consuming

Especially when continuous models are involved
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Introduction

Continuous vs discrete models

Conventional discrete models

Units (words, phrases, ... ) are events of discrete random variables.

⇒ Estimates based on relative frequencies

⇒ Very sparse problem

⇒ Ignores morphological, syntactic and semantic relationships

⇒ hinder the generalization power of statistical models and reduces their
ability to adapt to other domains.

Continuous models

Manipulate numerical representations of linguistic units

Automatically trained from large corpora

Implicitly capture some similarity relationships

⇒ A more promising power of generalization and adaptation
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Introduction

Discriminative Adaptation of Continuous Space
Translation Models

A practical situation

A large scale, state-of-the-art SMT system is available

and needs to be ported to a new domain,

using a small in-domain parallel corpus.

Our contributions

New loss functions for discriminative adaption of the CSTMs inspired from
the following approaches:

Max-margin (Watanabe et al.2007; Cherry and Foster2012)

Pair-wise ranking (Hopkins and May2011; Simianer et al.2012)

Case study

From News (WMT) to lecture translation (IWSLT)
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Continuous space translation models

The n-gram based approach in SMT

 s̅8: à 

 t̅8: to 

 s̅9: recevoir 

 t̅9: receive 

 s̅10: le 

 t̅10: the 

 s̅11: nobel de la paix 

 t̅11: nobel peace 

 s̅12: prix 

 t̅12: prize 

 u8  u9  u10  u11  u12 

s :   .... 

t :   .... 

à recevoir le prix nobel de la paixorg :   ....

....

....

Break up the translation process (Crego and Mariño2006)

1 Source re-ordering

2 Monotonic decoding

The translation model is a n-gram of tuples:

P (s, t) =

L∏

i=1

P (ui|ui−1, ...,ui−n+1)

See http://ncode.limsi.fr/
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Continuous space translation models

A factored n-gram translation model

P (ui|ui−1, ...,ui−n+1) = P ( ti|si ,si−1, ti−1, ..., si−n+1, ti−n+1)

×P (si|si−1, ti−1, ..., si−n+1, ti−n+1)

s :   .... 

t :   .... 

               

 ui-n+1 

t̅i-n+1

s̅i-n+1

               

               

 ui-1 

s̅i-1

               

 ui 

t̅i

s̅i

               

....

               
t̅i-1
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Continuous space translation models

A factored n-gram translation model

P (ui|ui−1, ...,ui−n+1) = P (ti|si,si−1, ti−1, ..., si−n+1, ti−n+1)

×P (si|si−1, ti−1, ..., si−n+1, ti−n+1)

These distributions can be decomposed at the level of words, and

estimated with the bilingual version of the SOUL model (Le et al.2012)
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Continuous space translation models

The SOUL model in one picture

P (wi|h) = P (c1(wi)|h)×
D∏

d=2

P (cd(wi)|h, c1:d−1(wi))

R

R

R

Wih

 shared projection space
0
1
0
0
0
0
0
0
0

wi-1

0
1
0
0
0
0
0
0
0

wi-2

0
1
0
0
0
0
0
0
0

wi-3

}short list

The associated clustering tree

} top classes (c1(wi))
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Continuous space translation models

Translation modelling with SOUL

Standard word n-gram models (monolingual)

Successful in Automatic Speech Recognition and SMT (Le et al.2011; Allauzen
et al.2011).

Word factored translation models (Le et al.2012)

They involve two languages:

the predicted word is in target or source language

the context is made of both source and target words

⇒ Two different projection matrices (R).

Conventional training

Maximize the log-likelihood of the bilingual training data
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Objective functions for adaptation

N -best-list rescoring

 s : everybody talks about happiness these days .

tout le monde parle de bonheur aujourd'hui .
tout le monde parle de bonheur actuellement .

tout le monde parle de bonheur ces derniers jours .
.
.
.

à tout le monde parle du bonheur aujourd'hui .
que tout le monde parle de bonheur ces derniers jours .

 tout le monde parle le bonheur ce . " 

n-best hypotheses

SMT system

h1
h2
h3
.
.
.
.
.

hn

alternatively tune the vector of coefficients λ
and adapt the CSTM’s parameters θ
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n-best hypotheses

purpose2. In a domain adaptation context, we assume that
an existing CSTM –trained on the out-of-domain data– al-
ready exists. This model is thus well suited to bootstrap the
adaptation process.

3. Objective functions for adaptation
In most previous works (eg. [8, 9]), CSTMs are estimated by
maximizing the regularized conditional log-likelihood (CLL)
on parallel training corpora. This estimation procedure is
used to train a baseline CSTM on the out-of-domain cor-
pus, producing a baseline model that will serve as an initial
point for domain adaptation. Given a small in-domain par-
allel corpus, the same training procedure can also be used.
A straightforward adaptation algorithm consists in running
a few epochs of the standard back-propagation algorithm on
the in-domain data to maximize the conditional likelihood
using, as initial parameters, the out-of-domain model.

There is however only a loose relationship between the
CLL criterion and the final translation quality. The CSTM is
usually integrated in the translation process through a rerank-
ing step, the goal of which is to reorder a reduced set of
candidate translations, called N -best list. Therefore, to bet-
ter take advantage of the small amount of in-domain data,
we propose to explore alternative objective functions that are
more directly related to the translation quality (as reflected by
the BLEU score) after reranking. We first present the general
learning algorithm, then the various objective functions.

3.1. Rescoring N -best lists with CSTMs

Due to the high computational cost of normalizing the output
layer, continuous models are in most cases3 introduced in a
post-processing step called N -best reranking.

We thus assume that for each source sentence s, the de-
coder can generate an N -best list {h1,h2, ...,hN} of N top
translation candidates. Each hypothesis hi = (ti,ai) is as-
sociated with the decoder score F�(s,h) computed as:

F�(s,h) =
KX

k=1

�kfk(s,h), (3)

where K feature functions (fk) are weighted by a set of co-
efficients (�k). The n-gram approach differs from other ap-
proaches by the hidden variables associated to derivations,
such as the source word reordering and the segmentation of
the resulting parallel sentence. The basic feature functions
used in this study are very similar to those used by standard
phrase-based SMT systems (see [30] for instance).

When reranking with a continuous space model, F�(.)
is augmented to also include an additional feature denoted
f✓(s,h). As explained in Section 2.2, f✓(s,h) typically

2The following parameters can be initialized given a source and target
language monolingual models: the source and target word embeddings re-
spectively, and the structured output layer’s structure.

3See however [31, 32, 19] for early attempts to integrate Neural Network
Translation Models within the decoder.

Algorithm 1 Joint optimization procedure for ✓ and �

1: Initialize ✓ and �
2: for each iteration do
3: for M mini-batches do . � is fixed
4: Compute the sub-gradient of L(✓, s) for all s in

the mini-batch
5: Update ✓
6: end for
7: Update � using dev set . ✓ is fixed
8: end for

corresponds to the negated log-probability of the derivation:
f✓(s,h) = � log P✓(s,h), where ✓ is the vector containing
the CSTM’s free parameters. The scoring function used in
reranking is then:

G�,✓(s,h) = F�(s,h) + �K+1f✓(s,h) (4)

This scoring function depends on the CSTM’s parame-
ters ✓, as well as on the coefficients � of the scoring func-
tion. In the approach proposed here, optimizing the rerank-
ing step will thus requires to alternatively tune the vector of
coefficients � and to adapt the CSTM’s weight vector ✓: the
former procedure uses the development data, while the latter
will use the in-domain parallel corpus.

The corresponding proposed optimization procedure
splits the in-domain set in mini-batches of a fixed size (typ-
ically 128 subsequent sentence pairs). As sketched in Algo-
rithm 1, each mini-batch is used to update the parameters ✓
of the CSTM while keeping � fixed. The vector � is updated
every M mini-batches.

In our study, tuning � is performed using standard tools
(here, the K-Best Mira algorithm described in [21] as imple-
mented in MOSES 4). The training of CSTMs (with fixed �)
is more interesting and we compare two discriminative ob-
jective functions, which aim at better taking the translation
quality into account. These two objectives are in turn com-
pared to the conventional maximization of the conditional
likelihood criterion on parallel data.

3.2. A max-margin approach

As explained above, each hypothesis hi produced by the
decoder is scored according to (4). Its quality can also be
evaluated by the sentence-level approximation of the BLEU
score sBLEU(hi). Let h⇤ denote the hypothesis with
the best sentence BLEU score. A max-margin loss func-
tion [33, 34, 20] for estimating ✓ can then be formulated as
follows:

Lmm(✓, s) = �G�,✓(s,h⇤)

+ max
1jN

(G�,✓(s,hj) + cost↵(hj)) , (5)

where cost↵(hj) = ↵
�
sBLEU(h⇤) � sBLEU(hj)

�
. The

parameter ↵ mitigates the contribution of the cost function
4http://www.statmt.org/moses/

Ranked

SMT system

h1
h2
h3
.
.
.
.
.

hn

alternatively tune the vector of coefficients λ
and adapt the CSTM’s parameters θ
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score sBLEU(hi). Let h⇤ denote the hypothesis with
the best sentence BLEU score. A max-margin loss func-
tion [33, 34, 20] for estimating ✓ can then be formulated as
follows:

Lmm(✓, s) = �G�,✓(s,h⇤)

+ max
1jN

(G�,✓(s,hj) + cost↵(hj)) , (5)

where cost↵(hj) = ↵
�
sBLEU(h⇤) � sBLEU(hj)

�
. The

parameter ↵ mitigates the contribution of the cost function
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N -best-list rescoring

 s : everybody talks about happiness these days .

tout le monde parle de bonheur aujourd'hui .
tout le monde parle de bonheur actuellement .

tout le monde parle de bonheur ces derniers jours .
.
.
.

à tout le monde parle du bonheur aujourd'hui .
que tout le monde parle de bonheur ces derniers jours .

 tout le monde parle le bonheur ce . " 

n-best hypotheses

purpose2. In a domain adaptation context, we assume that
an existing CSTM –trained on the out-of-domain data– al-
ready exists. This model is thus well suited to bootstrap the
adaptation process.

3. Objective functions for adaptation
In most previous works (eg. [8, 9]), CSTMs are estimated by
maximizing the regularized conditional log-likelihood (CLL)
on parallel training corpora. This estimation procedure is
used to train a baseline CSTM on the out-of-domain cor-
pus, producing a baseline model that will serve as an initial
point for domain adaptation. Given a small in-domain par-
allel corpus, the same training procedure can also be used.
A straightforward adaptation algorithm consists in running
a few epochs of the standard back-propagation algorithm on
the in-domain data to maximize the conditional likelihood
using, as initial parameters, the out-of-domain model.

There is however only a loose relationship between the
CLL criterion and the final translation quality. The CSTM is
usually integrated in the translation process through a rerank-
ing step, the goal of which is to reorder a reduced set of
candidate translations, called N -best list. Therefore, to bet-
ter take advantage of the small amount of in-domain data,
we propose to explore alternative objective functions that are
more directly related to the translation quality (as reflected by
the BLEU score) after reranking. We first present the general
learning algorithm, then the various objective functions.

3.1. Rescoring N -best lists with CSTMs

Due to the high computational cost of normalizing the output
layer, continuous models are in most cases3 introduced in a
post-processing step called N -best reranking.

We thus assume that for each source sentence s, the de-
coder can generate an N -best list {h1,h2, ...,hN} of N top
translation candidates. Each hypothesis hi = (ti,ai) is as-
sociated with the decoder score F�(s,h) computed as:

F�(s,h) =
KX

k=1

�kfk(s,h), (3)

where K feature functions (fk) are weighted by a set of co-
efficients (�k). The n-gram approach differs from other ap-
proaches by the hidden variables associated to derivations,
such as the source word reordering and the segmentation of
the resulting parallel sentence. The basic feature functions
used in this study are very similar to those used by standard
phrase-based SMT systems (see [30] for instance).

When reranking with a continuous space model, F�(.)
is augmented to also include an additional feature denoted
f✓(s,h). As explained in Section 2.2, f✓(s,h) typically

2The following parameters can be initialized given a source and target
language monolingual models: the source and target word embeddings re-
spectively, and the structured output layer’s structure.

3See however [31, 32, 19] for early attempts to integrate Neural Network
Translation Models within the decoder.

Algorithm 1 Joint optimization procedure for ✓ and �

1: Initialize ✓ and �
2: for each iteration do
3: for M mini-batches do . � is fixed
4: Compute the sub-gradient of L(✓, s) for all s in

the mini-batch
5: Update ✓
6: end for
7: Update � using dev set . ✓ is fixed
8: end for

corresponds to the negated log-probability of the derivation:
f✓(s,h) = � log P✓(s,h), where ✓ is the vector containing
the CSTM’s free parameters. The scoring function used in
reranking is then:

G�,✓(s,h) = F�(s,h) + �K+1f✓(s,h) (4)

This scoring function depends on the CSTM’s parame-
ters ✓, as well as on the coefficients � of the scoring func-
tion. In the approach proposed here, optimizing the rerank-
ing step will thus requires to alternatively tune the vector of
coefficients � and to adapt the CSTM’s weight vector ✓: the
former procedure uses the development data, while the latter
will use the in-domain parallel corpus.

The corresponding proposed optimization procedure
splits the in-domain set in mini-batches of a fixed size (typ-
ically 128 subsequent sentence pairs). As sketched in Algo-
rithm 1, each mini-batch is used to update the parameters ✓
of the CSTM while keeping � fixed. The vector � is updated
every M mini-batches.

In our study, tuning � is performed using standard tools
(here, the K-Best Mira algorithm described in [21] as imple-
mented in MOSES 4). The training of CSTMs (with fixed �)
is more interesting and we compare two discriminative ob-
jective functions, which aim at better taking the translation
quality into account. These two objectives are in turn com-
pared to the conventional maximization of the conditional
likelihood criterion on parallel data.

3.2. A max-margin approach

As explained above, each hypothesis hi produced by the
decoder is scored according to (4). Its quality can also be
evaluated by the sentence-level approximation of the BLEU
score sBLEU(hi). Let h⇤ denote the hypothesis with
the best sentence BLEU score. A max-margin loss func-
tion [33, 34, 20] for estimating ✓ can then be formulated as
follows:

Lmm(✓, s) = �G�,✓(s,h⇤)

+ max
1jN

(G�,✓(s,hj) + cost↵(hj)) , (5)

where cost↵(hj) = ↵
�
sBLEU(h⇤) � sBLEU(hj)

�
. The

parameter ↵ mitigates the contribution of the cost function
4http://www.statmt.org/moses/
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purpose2. In a domain adaptation context, we assume that
an existing CSTM –trained on the out-of-domain data– al-
ready exists. This model is thus well suited to bootstrap the
adaptation process.

3. Objective functions for adaptation
In most previous works (eg. [8, 9]), CSTMs are estimated by
maximizing the regularized conditional log-likelihood (CLL)
on parallel training corpora. This estimation procedure is
used to train a baseline CSTM on the out-of-domain cor-
pus, producing a baseline model that will serve as an initial
point for domain adaptation. Given a small in-domain par-
allel corpus, the same training procedure can also be used.
A straightforward adaptation algorithm consists in running
a few epochs of the standard back-propagation algorithm on
the in-domain data to maximize the conditional likelihood
using, as initial parameters, the out-of-domain model.

There is however only a loose relationship between the
CLL criterion and the final translation quality. The CSTM is
usually integrated in the translation process through a rerank-
ing step, the goal of which is to reorder a reduced set of
candidate translations, called N -best list. Therefore, to bet-
ter take advantage of the small amount of in-domain data,
we propose to explore alternative objective functions that are
more directly related to the translation quality (as reflected by
the BLEU score) after reranking. We first present the general
learning algorithm, then the various objective functions.

3.1. Rescoring N -best lists with CSTMs

Due to the high computational cost of normalizing the output
layer, continuous models are in most cases3 introduced in a
post-processing step called N -best reranking.

We thus assume that for each source sentence s, the de-
coder can generate an N -best list {h1,h2, ...,hN} of N top
translation candidates. Each hypothesis hi = (ti,ai) is as-
sociated with the decoder score F�(s,h) computed as:

F�(s,h) =

KX

k=1

�kfk(s,h), (3)

where K feature functions (fk) are weighted by a set of co-
efficients (�k). The n-gram approach differs from other ap-
proaches by the hidden variables associated to derivations,
such as the source word reordering and the segmentation of
the resulting parallel sentence. The basic feature functions
used in this study are very similar to those used by standard
phrase-based SMT systems (see [30] for instance).

When reranking with a continuous space model, F�(.)
is augmented to also include an additional feature denoted
f✓(s,h). As explained in Section 2.2, f✓(s,h) typically

2The following parameters can be initialized given a source and target
language monolingual models: the source and target word embeddings re-
spectively, and the structured output layer’s structure.

3See however [31, 32, 19] for early attempts to integrate Neural Network
Translation Models within the decoder.

Algorithm 1 Joint optimization procedure for ✓ and �

1: Initialize ✓ and �
2: for each iteration do
3: for M mini-batches do . � is fixed
4: Compute the sub-gradient of L(✓, s) for all s in

the mini-batch
5: Update ✓
6: end for
7: Update � using dev set . ✓ is fixed
8: end for

corresponds to the negated log-probability of the derivation:
f✓(s,h) = � log P✓(s,h), where ✓ is the vector containing
the CSTM’s free parameters. The scoring function used in
reranking is then:

G�,✓(s,h) = F�(s,h) + �K+1f✓(s,h) (4)

This scoring function depends on the CSTM’s parame-
ters ✓, as well as on the coefficients � of the scoring func-
tion. In the approach proposed here, optimizing the rerank-
ing step will thus requires to alternatively tune the vector of
coefficients � and to adapt the CSTM’s weight vector ✓: the
former procedure uses the development data, while the latter
will use the in-domain parallel corpus.

The corresponding proposed optimization procedure
splits the in-domain set in mini-batches of a fixed size (typ-
ically 128 subsequent sentence pairs). As sketched in Algo-
rithm 1, each mini-batch is used to update the parameters ✓
of the CSTM while keeping � fixed. The vector � is updated
every M mini-batches.

In our study, tuning � is performed using standard tools
(here, the K-Best Mira algorithm described in [21] as imple-
mented in MOSES 4). The training of CSTMs (with fixed �)
is more interesting and we compare two discriminative ob-
jective functions, which aim at better taking the translation
quality into account. These two objectives are in turn com-
pared to the conventional maximization of the conditional
likelihood criterion on parallel data.

3.2. A max-margin approach

As explained above, each hypothesis hi produced by the
decoder is scored according to (4). Its quality can also be
evaluated by the sentence-level approximation of the BLEU
score sBLEU(hi). Let h⇤ denote the hypothesis with
the best sentence BLEU score. A max-margin loss func-
tion [33, 34, 20] for estimating ✓ can then be formulated as
follows:

Lmm(✓, s) = �G�,✓(s,h⇤)

+ max
1jN

(G�,✓(s,hj) + cost↵(hj)) , (5)

where cost↵(hj) = ↵
�
sBLEU(h⇤) � sBLEU(hj)
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. The

parameter ↵ mitigates the contribution of the cost function
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Optimization algorithm

purpose2. In a domain adaptation context, we assume that
an existing CSTM –trained on the out-of-domain data– al-
ready exists. This model is thus well suited to bootstrap the
adaptation process.

3. Objective functions for adaptation
In most previous works (eg. [8, 9]), CSTMs are estimated by
maximizing the regularized conditional log-likelihood (CLL)
on parallel training corpora. This estimation procedure is
used to train a baseline CSTM on the out-of-domain cor-
pus, producing a baseline model that will serve as an initial
point for domain adaptation. Given a small in-domain par-
allel corpus, the same training procedure can also be used.
A straightforward adaptation algorithm consists in running
a few epochs of the standard back-propagation algorithm on
the in-domain data to maximize the conditional likelihood
using, as initial parameters, the out-of-domain model.

There is however only a loose relationship between the
CLL criterion and the final translation quality. The CSTM is
usually integrated in the translation process through a rerank-
ing step, the goal of which is to reorder a reduced set of
candidate translations, called N -best list. Therefore, to bet-
ter take advantage of the small amount of in-domain data,
we propose to explore alternative objective functions that are
more directly related to the translation quality (as reflected by
the BLEU score) after reranking. We first present the general
learning algorithm, then the various objective functions.

3.1. Rescoring N -best lists with CSTMs

Due to the high computational cost of normalizing the output
layer, continuous models are in most cases3 introduced in a
post-processing step called N -best reranking.

We thus assume that for each source sentence s, the de-
coder can generate an N -best list {h1,h2, ...,hN} of N top
translation candidates. Each hypothesis hi = (ti,ai) is as-
sociated with the decoder score F�(s,h) computed as:

F�(s,h) =
KX

k=1

�kfk(s,h), (3)

where K feature functions (fk) are weighted by a set of co-
efficients (�k). The n-gram approach differs from other ap-
proaches by the hidden variables associated to derivations,
such as the source word reordering and the segmentation of
the resulting parallel sentence. The basic feature functions
used in this study are very similar to those used by standard
phrase-based SMT systems (see [30] for instance).

When reranking with a continuous space model, F�(.)
is augmented to also include an additional feature denoted
f✓(s,h). As explained in Section 2.2, f✓(s,h) typically

2The following parameters can be initialized given a source and target
language monolingual models: the source and target word embeddings re-
spectively, and the structured output layer’s structure.

3See however [31, 32, 19] for early attempts to integrate Neural Network
Translation Models within the decoder.

Algorithm 1 Joint optimization procedure for ✓ and �

1: Initialize ✓ and �
2: for each iteration do
3: for M mini-batches do . � is fixed
4: Compute the sub-gradient of L(✓, s) for all s in

the mini-batch
5: Update ✓
6: end for
7: Update � using dev set . ✓ is fixed
8: end for

corresponds to the negated log-probability of the derivation:
f✓(s,h) = � log P✓(s,h), where ✓ is the vector containing
the CSTM’s free parameters. The scoring function used in
reranking is then:

G�,✓(s,h) = F�(s,h) + �K+1f✓(s,h) (4)

This scoring function depends on the CSTM’s parame-
ters ✓, as well as on the coefficients � of the scoring func-
tion. In the approach proposed here, optimizing the rerank-
ing step will thus requires to alternatively tune the vector of
coefficients � and to adapt the CSTM’s weight vector ✓: the
former procedure uses the development data, while the latter
will use the in-domain parallel corpus.

The corresponding proposed optimization procedure
splits the in-domain set in mini-batches of a fixed size (typ-
ically 128 subsequent sentence pairs). As sketched in Algo-
rithm 1, each mini-batch is used to update the parameters ✓
of the CSTM while keeping � fixed. The vector � is updated
every M mini-batches.

In our study, tuning � is performed using standard tools
(here, the K-Best Mira algorithm described in [21] as imple-
mented in MOSES 4). The training of CSTMs (with fixed �)
is more interesting and we compare two discriminative ob-
jective functions, which aim at better taking the translation
quality into account. These two objectives are in turn com-
pared to the conventional maximization of the conditional
likelihood criterion on parallel data.

3.2. A max-margin approach

As explained above, each hypothesis hi produced by the
decoder is scored according to (4). Its quality can also be
evaluated by the sentence-level approximation of the BLEU
score sBLEU(hi). Let h⇤ denote the hypothesis with
the best sentence BLEU score. A max-margin loss func-
tion [33, 34, 20] for estimating ✓ can then be formulated as
follows:

Lmm(✓, s) = �G�,✓(s,h⇤)

+ max
1jN

(G�,✓(s,hj) + cost↵(hj)) , (5)

where cost↵(hj) = ↵
�
sBLEU(h⇤) � sBLEU(hj)

�
. The

parameter ↵ mitigates the contribution of the cost function
4http://www.statmt.org/moses/
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purpose2. In a domain adaptation context, we assume that
an existing CSTM –trained on the out-of-domain data– al-
ready exists. This model is thus well suited to bootstrap the
adaptation process.

3. Objective functions for adaptation
In most previous works (eg. [8, 9]), CSTMs are estimated by
maximizing the regularized conditional log-likelihood (CLL)
on parallel training corpora. This estimation procedure is
used to train a baseline CSTM on the out-of-domain cor-
pus, producing a baseline model that will serve as an initial
point for domain adaptation. Given a small in-domain par-
allel corpus, the same training procedure can also be used.
A straightforward adaptation algorithm consists in running
a few epochs of the standard back-propagation algorithm on
the in-domain data to maximize the conditional likelihood
using, as initial parameters, the out-of-domain model.

There is however only a loose relationship between the
CLL criterion and the final translation quality. The CSTM is
usually integrated in the translation process through a rerank-
ing step, the goal of which is to reorder a reduced set of
candidate translations, called N -best list. Therefore, to bet-
ter take advantage of the small amount of in-domain data,
we propose to explore alternative objective functions that are
more directly related to the translation quality (as reflected by
the BLEU score) after reranking. We first present the general
learning algorithm, then the various objective functions.

3.1. Rescoring N -best lists with CSTMs

Due to the high computational cost of normalizing the output
layer, continuous models are in most cases3 introduced in a
post-processing step called N -best reranking.

We thus assume that for each source sentence s, the de-
coder can generate an N -best list {h1,h2, ...,hN} of N top
translation candidates. Each hypothesis hi = (ti,ai) is as-
sociated with the decoder score F�(s,h) computed as:

F�(s,h) =
KX

k=1

�kfk(s,h), (3)

where K feature functions (fk) are weighted by a set of co-
efficients (�k). The n-gram approach differs from other ap-
proaches by the hidden variables associated to derivations,
such as the source word reordering and the segmentation of
the resulting parallel sentence. The basic feature functions
used in this study are very similar to those used by standard
phrase-based SMT systems (see [30] for instance).

When reranking with a continuous space model, F�(.)
is augmented to also include an additional feature denoted
f✓(s,h). As explained in Section 2.2, f✓(s,h) typically

2The following parameters can be initialized given a source and target
language monolingual models: the source and target word embeddings re-
spectively, and the structured output layer’s structure.

3See however [31, 32, 19] for early attempts to integrate Neural Network
Translation Models within the decoder.

Algorithm 1 Joint optimization procedure for ✓ and �

1: Initialize ✓ and �
2: for each iteration do
3: for M mini-batches do . � is fixed
4: Compute the sub-gradient of L(✓, s) for all s in

the mini-batch
5: Update ✓
6: end for
7: Update � using dev set . ✓ is fixed
8: end for

corresponds to the negated log-probability of the derivation:
f✓(s,h) = � log P✓(s,h), where ✓ is the vector containing
the CSTM’s free parameters. The scoring function used in
reranking is then:

G�,✓(s,h) = F�(s,h) + �K+1f✓(s,h) (4)

This scoring function depends on the CSTM’s parame-
ters ✓, as well as on the coefficients � of the scoring func-
tion. In the approach proposed here, optimizing the rerank-
ing step will thus requires to alternatively tune the vector of
coefficients � and to adapt the CSTM’s weight vector ✓: the
former procedure uses the development data, while the latter
will use the in-domain parallel corpus.

The corresponding proposed optimization procedure
splits the in-domain set in mini-batches of a fixed size (typ-
ically 128 subsequent sentence pairs). As sketched in Algo-
rithm 1, each mini-batch is used to update the parameters ✓
of the CSTM while keeping � fixed. The vector � is updated
every M mini-batches.

In our study, tuning � is performed using standard tools
(here, the K-Best Mira algorithm described in [21] as imple-
mented in MOSES 4). The training of CSTMs (with fixed �)
is more interesting and we compare two discriminative ob-
jective functions, which aim at better taking the translation
quality into account. These two objectives are in turn com-
pared to the conventional maximization of the conditional
likelihood criterion on parallel data.

3.2. A max-margin approach

As explained above, each hypothesis hi produced by the
decoder is scored according to (4). Its quality can also be
evaluated by the sentence-level approximation of the BLEU
score sBLEU(hi). Let h⇤ denote the hypothesis with
the best sentence BLEU score. A max-margin loss func-
tion [33, 34, 20] for estimating ✓ can then be formulated as
follows:

Lmm(✓, s) = �G�,✓(s,h⇤)

+ max
1jN

(G�,✓(s,hj) + cost↵(hj)) , (5)

where cost↵(hj) = ↵
�
sBLEU(h⇤) � sBLEU(hj)

�
. The

parameter ↵ mitigates the contribution of the cost function
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Optimization algorithm

purpose2. In a domain adaptation context, we assume that
an existing CSTM –trained on the out-of-domain data– al-
ready exists. This model is thus well suited to bootstrap the
adaptation process.

3. Objective functions for adaptation
In most previous works (eg. [8, 9]), CSTMs are estimated by
maximizing the regularized conditional log-likelihood (CLL)
on parallel training corpora. This estimation procedure is
used to train a baseline CSTM on the out-of-domain cor-
pus, producing a baseline model that will serve as an initial
point for domain adaptation. Given a small in-domain par-
allel corpus, the same training procedure can also be used.
A straightforward adaptation algorithm consists in running
a few epochs of the standard back-propagation algorithm on
the in-domain data to maximize the conditional likelihood
using, as initial parameters, the out-of-domain model.

There is however only a loose relationship between the
CLL criterion and the final translation quality. The CSTM is
usually integrated in the translation process through a rerank-
ing step, the goal of which is to reorder a reduced set of
candidate translations, called N -best list. Therefore, to bet-
ter take advantage of the small amount of in-domain data,
we propose to explore alternative objective functions that are
more directly related to the translation quality (as reflected by
the BLEU score) after reranking. We first present the general
learning algorithm, then the various objective functions.

3.1. Rescoring N -best lists with CSTMs

Due to the high computational cost of normalizing the output
layer, continuous models are in most cases3 introduced in a
post-processing step called N -best reranking.

We thus assume that for each source sentence s, the de-
coder can generate an N -best list {h1,h2, ...,hN} of N top
translation candidates. Each hypothesis hi = (ti,ai) is as-
sociated with the decoder score F�(s,h) computed as:

F�(s,h) =
KX

k=1

�kfk(s,h), (3)

where K feature functions (fk) are weighted by a set of co-
efficients (�k). The n-gram approach differs from other ap-
proaches by the hidden variables associated to derivations,
such as the source word reordering and the segmentation of
the resulting parallel sentence. The basic feature functions
used in this study are very similar to those used by standard
phrase-based SMT systems (see [30] for instance).

When reranking with a continuous space model, F�(.)
is augmented to also include an additional feature denoted
f✓(s,h). As explained in Section 2.2, f✓(s,h) typically

2The following parameters can be initialized given a source and target
language monolingual models: the source and target word embeddings re-
spectively, and the structured output layer’s structure.

3See however [31, 32, 19] for early attempts to integrate Neural Network
Translation Models within the decoder.

Algorithm 1 Joint optimization procedure for ✓ and �

1: Initialize ✓ and �
2: for each iteration do
3: for M mini-batches do . � is fixed
4: Compute the sub-gradient of L(✓, s) for all s in

the mini-batch
5: Update ✓
6: end for
7: Update � using dev set . ✓ is fixed
8: end for

corresponds to the negated log-probability of the derivation:
f✓(s,h) = � log P✓(s,h), where ✓ is the vector containing
the CSTM’s free parameters. The scoring function used in
reranking is then:

G�,✓(s,h) = F�(s,h) + �K+1f✓(s,h) (4)

This scoring function depends on the CSTM’s parame-
ters ✓, as well as on the coefficients � of the scoring func-
tion. In the approach proposed here, optimizing the rerank-
ing step will thus requires to alternatively tune the vector of
coefficients � and to adapt the CSTM’s weight vector ✓: the
former procedure uses the development data, while the latter
will use the in-domain parallel corpus.

The corresponding proposed optimization procedure
splits the in-domain set in mini-batches of a fixed size (typ-
ically 128 subsequent sentence pairs). As sketched in Algo-
rithm 1, each mini-batch is used to update the parameters ✓
of the CSTM while keeping � fixed. The vector � is updated
every M mini-batches.

In our study, tuning � is performed using standard tools
(here, the K-Best Mira algorithm described in [21] as imple-
mented in MOSES 4). The training of CSTMs (with fixed �)
is more interesting and we compare two discriminative ob-
jective functions, which aim at better taking the translation
quality into account. These two objectives are in turn com-
pared to the conventional maximization of the conditional
likelihood criterion on parallel data.

3.2. A max-margin approach

As explained above, each hypothesis hi produced by the
decoder is scored according to (4). Its quality can also be
evaluated by the sentence-level approximation of the BLEU
score sBLEU(hi). Let h⇤ denote the hypothesis with
the best sentence BLEU score. A max-margin loss func-
tion [33, 34, 20] for estimating ✓ can then be formulated as
follows:

Lmm(✓, s) = �G�,✓(s,h⇤)

+ max
1jN

(G�,✓(s,hj) + cost↵(hj)) , (5)

where cost↵(hj) = ↵
�
sBLEU(h⇤) � sBLEU(hj)
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. The

parameter ↵ mitigates the contribution of the cost function
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Objective functions for adaptation

Optimization algorithm

purpose2. In a domain adaptation context, we assume that
an existing CSTM –trained on the out-of-domain data– al-
ready exists. This model is thus well suited to bootstrap the
adaptation process.

3. Objective functions for adaptation
In most previous works (eg. [8, 9]), CSTMs are estimated by
maximizing the regularized conditional log-likelihood (CLL)
on parallel training corpora. This estimation procedure is
used to train a baseline CSTM on the out-of-domain cor-
pus, producing a baseline model that will serve as an initial
point for domain adaptation. Given a small in-domain par-
allel corpus, the same training procedure can also be used.
A straightforward adaptation algorithm consists in running
a few epochs of the standard back-propagation algorithm on
the in-domain data to maximize the conditional likelihood
using, as initial parameters, the out-of-domain model.

There is however only a loose relationship between the
CLL criterion and the final translation quality. The CSTM is
usually integrated in the translation process through a rerank-
ing step, the goal of which is to reorder a reduced set of
candidate translations, called N -best list. Therefore, to bet-
ter take advantage of the small amount of in-domain data,
we propose to explore alternative objective functions that are
more directly related to the translation quality (as reflected by
the BLEU score) after reranking. We first present the general
learning algorithm, then the various objective functions.

3.1. Rescoring N -best lists with CSTMs

Due to the high computational cost of normalizing the output
layer, continuous models are in most cases3 introduced in a
post-processing step called N -best reranking.

We thus assume that for each source sentence s, the de-
coder can generate an N -best list {h1,h2, ...,hN} of N top
translation candidates. Each hypothesis hi = (ti,ai) is as-
sociated with the decoder score F�(s,h) computed as:

F�(s,h) =
KX

k=1

�kfk(s,h), (3)

where K feature functions (fk) are weighted by a set of co-
efficients (�k). The n-gram approach differs from other ap-
proaches by the hidden variables associated to derivations,
such as the source word reordering and the segmentation of
the resulting parallel sentence. The basic feature functions
used in this study are very similar to those used by standard
phrase-based SMT systems (see [30] for instance).

When reranking with a continuous space model, F�(.)
is augmented to also include an additional feature denoted
f✓(s,h). As explained in Section 2.2, f✓(s,h) typically

2The following parameters can be initialized given a source and target
language monolingual models: the source and target word embeddings re-
spectively, and the structured output layer’s structure.

3See however [31, 32, 19] for early attempts to integrate Neural Network
Translation Models within the decoder.

Algorithm 1 Joint optimization procedure for ✓ and �

1: Initialize ✓ and �
2: for each iteration do
3: for M mini-batches do . � is fixed
4: Compute the sub-gradient of L(✓, s) for all s in

the mini-batch
5: Update ✓
6: end for
7: Update � using dev set . ✓ is fixed
8: end for

corresponds to the negated log-probability of the derivation:
f✓(s,h) = � log P✓(s,h), where ✓ is the vector containing
the CSTM’s free parameters. The scoring function used in
reranking is then:

G�,✓(s,h) = F�(s,h) + �K+1f✓(s,h) (4)

This scoring function depends on the CSTM’s parame-
ters ✓, as well as on the coefficients � of the scoring func-
tion. In the approach proposed here, optimizing the rerank-
ing step will thus requires to alternatively tune the vector of
coefficients � and to adapt the CSTM’s weight vector ✓: the
former procedure uses the development data, while the latter
will use the in-domain parallel corpus.

The corresponding proposed optimization procedure
splits the in-domain set in mini-batches of a fixed size (typ-
ically 128 subsequent sentence pairs). As sketched in Algo-
rithm 1, each mini-batch is used to update the parameters ✓
of the CSTM while keeping � fixed. The vector � is updated
every M mini-batches.

In our study, tuning � is performed using standard tools
(here, the K-Best Mira algorithm described in [21] as imple-
mented in MOSES 4). The training of CSTMs (with fixed �)
is more interesting and we compare two discriminative ob-
jective functions, which aim at better taking the translation
quality into account. These two objectives are in turn com-
pared to the conventional maximization of the conditional
likelihood criterion on parallel data.

3.2. A max-margin approach

As explained above, each hypothesis hi produced by the
decoder is scored according to (4). Its quality can also be
evaluated by the sentence-level approximation of the BLEU
score sBLEU(hi). Let h⇤ denote the hypothesis with
the best sentence BLEU score. A max-margin loss func-
tion [33, 34, 20] for estimating ✓ can then be formulated as
follows:

Lmm(✓, s) = �G�,✓(s,h⇤)

+ max
1jN

(G�,✓(s,hj) + cost↵(hj)) , (5)

where cost↵(hj) = ↵
�
sBLEU(h⇤) � sBLEU(hj)

�
. The

parameter ↵ mitigates the contribution of the cost function
4http://www.statmt.org/moses/

MERT or KBMIRA (Cherry and Foster2012)
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Objective functions for adaptation

Max-margin adaptation

The cost of an hypothesis:

costα(h) = α
(
sBLEU(h∗)− sBLEU(h)

)
, where

h∗ = argmax
h

sBLEU(h), the best hypothesis

sBLEU is the sentence BLEU and α a scaling factor

Max-margin loss function

n-best hypothesessBLEU
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Objective functions for adaptation

Combining the Max-margin and Pairwise-ranking
approaches

Drawbacks of the Max-margin approach

Only considers a pair of hypotheses

While several good translations only differ slightly

→ Pairwise-ranking (Hopkins and May2011; Simianer et al.2012)

→ Including the margin term (the cost)

n-best hypotheses

h

sBLEU

�(rank) � �

For each h
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Experiments

Experimental set-up

English French
Vocabulary 505K 492K
Out-of-domain data 12M sentences (WMT’13)
In-domain data 107, 058 sentences (IWSLT’11)
Development set 1, 664 sentences
Test set 934 sentences
N-best lists 300 hypotheses
Context length CSTM 9

Out-of-domain data to train baseline system (N-code + CSTM)

In-domain data to adapt CSTM to TED Talks task.
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Experiments

Comparison of different loss functions
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Experiments

Impact of the margin - α
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Experiments

Final results

System dev test
Baseline systems (out-of-domain)

n-code 33.9 27.6
n-code + CSTM WMT 34.4 28.5

Adapted systems
n-code + CSTM CLL adapted 35.0 29.1
n-code + CSTM Lmm adapted α = 100 35.1 29.4
n-code + CSTM Lpro adapted 35.4 29.5
n-code + CSTM Lpro−mm adapted α = 100 35.8 29.6
n-code + all WMT CSTMs + 2 CSTMs Lpro−mm 36.4 29.9
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